
Professional Programmer’s Guide to Fortran77 ∗

Clive G. Page, University of Leicester, UK

22nd February 1995

This Þle contains the full text of Professional Programmer’s Guide to Fortran77 published
by Pitman in 1988. Since the book went out of print in 1994, it seemed reasonable to make the
text available free of charge over the Internet. Fortran77 is, of course, technically obsolete, since
the ISO Standard for Fortran90 has replaced it. Many programmers are likely to continue using
Fortran77, however, until Fortran90 compilers become much more widely available.
I am retaining all rights to this text, except that it may be copied and reproduced without

fee, provided that the attribution to the author is preserved.
This Þle is written in LATEXand is called prof77.tex: it is substantially the same as the

published version but the opportunity has been taken to correct a few mistakes and make some
minor updates.
In order to keep the price down, the book was deliberately kept rather shorter than the

average Fortran textbook, but it still covered the entire Fortran77 language as deÞned in the
ANSI and ISO Standards. I also managed to include several topics which are often omitted from
much larger textbooks because they are deemed to be too �advanced�.
I also wanted to encourage the writing of clear, reliable, portable, robust, and well structured

code, so short sections appear throughout the book offering guidance on the practical use of
Fortran. Various obsolete or superßuous features of the language, mainly those which have been
retained for compatibility with earlier versions of Fortran, are omitted from the main text but
are covered in the section 13. This is provided solely for the assistance of those who inherit
elderly software.

∗ c° Clive G. Page, 1988, 1995

1

CONTENTS 2

Contents

1 What Is Fortran? 5
1.1 Early Development . 5
1.2 Standardization . 5
1.3 Strengths and Weaknesses . 6
1.4 Precautions . 7

2 Basic Fortran Concepts 8
2.1 Statements . 8
2.2 Expressions and Assignments . 9
2.3 Integer and Real Data Types . 10
2.4 DO Loops . 11
2.5 Formatted Output . 12
2.6 Functions . 12
2.7 IF-blocks . 13
2.8 Arrays . 14

3 Fortran in Practice 16
3.1 The Fortran System . 16
3.2 Creating the Source Code . 17
3.3 Compiling . 18
3.4 Linking . 19
3.5 Program Development . 19

4 Program Structure and Layout 21
4.1 The Fortran Character Set . 21
4.2 Statements and Lines . 22
4.3 Program Units . 25
4.4 Statement Types and Order . 25
4.5 Symbolic Names . 26
4.6 PROGRAM Statement . 28
4.7 END Statement . 28

5 Constants, Variables, and Arrays 28
5.1 Data Types . 28
5.2 Constants . 32
5.3 Specifying Data Type . 33
5.4 Named Constants . 36
5.5 Variables . 38
5.6 Arrays . 38

6 Arithmetic 40
6.1 Arithmetic Expressions . 41
6.2 Arithmetic Intrinsic Functions . 45
6.3 Arithmetic Assignment Statements . 47

7 Character Handling and Logic 48
7.1 Character Facilities . 48

CONTENTS 3

7.2 Character Substrings . 49
7.3 Character Expressions . 50
7.4 Character Assignment Statements . 50
7.5 Character Intrinsic Functions . 51
7.6 Relational Expressions . 52
7.7 Logical Expressions . 54
7.8 Logical Assignment Statements . 56

8 Control Statements 56
8.1 Control Structures . 56
8.2 IF-Blocks . 57
8.3 DO-Loops . 58
8.4 Logical-IF Statement . 60
8.5 Unconditional GO TO Statement . 61
8.6 Computed GO TO Statement . 61
8.7 STOP Statement . 62

9 Procedures 63
9.1 Intrinsic Functions . 63
9.2 Statement Functions . 64
9.3 External Procedures . 65
9.4 Arguments of External Procedures . 68
9.5 Variables as Dummy Arguments . 70
9.6 Arrays as Arguments . 71
9.7 Procedures as Arguments . 75
9.8 Subroutine and Call Statements . 76
9.9 RETURN Statement . 76
9.10 FUNCTION Statement . 77
9.11 SAVE Statement . 79
9.12 EXTERNAL and INTRINSIC Statements . 79

10 Input/Output Facilities 80
10.1 Files, I/O Units, and Records . 80
10.2 External Files . 83
10.3 Internal Files . 85
10.4 Pre-Connected Files . 87
10.5 Error and End-Of-File Conditions . 87
10.6 Format SpeciÞcations . 89
10.7 Format Edit Descriptors . 90
10.8 Format Data Descriptors A, E, F, G, I, L . 91
10.9 Format Control Descriptors . 93
10.10List-Directed Formatting . 96
10.11Carriage-Control and Printing . 97
10.12Input/Output Statements and Keywords . 98
10.13OPEN Statement . 99
10.14CLOSE Statement . 100
10.15INQUIRE Statement . 100
10.16READ and WRITE Statements . 102

CONTENTS 4

10.17REWIND and BACKSPACE Statements . 104

11 DATA Statement 104
11.1 DeÞned and UndeÞned Values . 105
11.2 Initialising Variables . 106
11.3 Initialising Arrays . 106
11.4 DATA Statements in Procedures . 107
11.5 General Rules . 108

12 Common Blocks 108
12.1 Using Common Blocks . 109
12.2 Blank Common Blocks . 112
12.3 COMMON Statement . 113
12.4 BLOCK DATA Program Units . 113

13 Obsolete and Deprecated Features 114
13.1 Storage of Character Strings in Non-character Items 114
13.2 Arithmetic IF Statement . 114
13.3 ASSIGN and assigned GO TO Statements . 114
13.4 PAUSE Statement . 115
13.5 Alternate RETURN . 115
13.6 ENTRY Statement . 116
13.7 EQUIVALENCE Statement . 116
13.8 SpeciÞc Names of Intrinsic Functions . 116
13.9 PRINT Statement and simpliÞed READ . 117
13.10END FILE Statement . 117
13.11Obsolete Format Descriptors . 117

14 Appendix A � List of Intrinsic Functions 118

15 Appendix B � SpeciÞc Names of Generic Functions 120

1 WHAT IS FORTRAN? 5

1 What Is Fortran?

Fortran is the most widely used programming language in the world for numerical applications.
It has achieved this position partly by being on the scene earlier than any of the other major
languages and partly because it seems gradually to have evolved the features which its users,
especially scientists and engineers, found most useful. In order to retain compatibility with old
programs, Fortran has advanced mainly by adding new features rather than by removing old
ones. The net result is, of course, that some parts of the language are, by present standards,
rather archaic: some of these can be avoided easily, others can still be a nuisance.
This section gives a brief history of the language, outlines its future prospects, and summarises

its strengths and weaknesses.

1.1 Early Development

Fortran was invented by a team of programmers working for IBM in the early nineteen-Þfties.
This group, led by John Backus, produced the Þrst compiler, for an IBM 704 computer, in 1957.
They used the name Fortran because one of their principal aims was �formula translation�. But
Fortran was in fact one of the very Þrst high-level language: it came complete with control
structures and facilities for input/output. Fortran became popular quite rapidly and compilers
were soon produced for other IBM machines. Before long other manufacturers were forced to
design Fortran compilers for their own hardware. By 1963 all the major manufacturers had
joined in and there were dozens of different Fortran compilers in existence, many of them rather
more powerful than the original.
All this resulted in a chaos of incompatible dialects. Some order was restored in 1966 when

an American national standard was deÞned for Fortran. This was the Þrst time that a standard
had ever been produced for a computer programming language. Although it was very valuable,
it hardly checked the growth of the language. Quite deliberately the Fortran66 standard only
speciÞed a set of language features which had to be present: it did not prevent other features
being added. As time went on these extensions proliferated and the need for a further stan-
dardization exercise became apparent. This eventually resulted in the current version of the
language: Fortran77.

1.2 Standardization

One of the most important features of Fortran programs is their portability, that is the ease
with which they can be moved from one computer system to another. Now that each generation
of hardware succeeds the previous one every few years, while good software often lasts for much
longer, more and more programs need to be portable. The growth in computer networks is also
encouraging the development of portable programs.
The Þrst step in achieving portability is to ensure that a standard form of programming

language is acceptable everywhere. This need is now widely recognised and has resulted in the
development of standards for all the major programming languages. In practice, however, many
of the new standards have been ignored and standard-conforming systems for languages like
Basic and Pascal are still very rare.
Fortunately Fortran is in much better shape: almost all current Fortran systems are designed

to conform to the standard usually called Fortran77. This was produced in 1977 by a committee
of the American National Standards Institute (ANSI) and was subsequently adopted by the
International Standards Organisation (ISO). The deÞnition was published as ANSI X3.9-1978
and ISO 1539-1980. The term �Standard Fortran� will be used in the rest of this book to refer

1 WHAT IS FORTRAN? 6

to mean Fortran77 according to this deÞnition.
Fortran is now one of the most widely used computer languages in the world with compilers

available for almost every type of computer on the market. Since Fortran77 is quite good at han-
dling character strings as well as numbers and also has powerful Þle-handling and input/output
facilities, it is suitable for a much wider range of applications than before.

Full and Subset Fortran

The ANSI Standard actually deÞnes two different levels for Fortran77. The simpler form, subset
Fortran, was intended for use on computers which were too small to handle the full language.
Now that even personal computers are powerful enough to handle full Fortran77, subset Fortran
is practically obsolete. This book, therefore, only describes full Fortran77.

Fortran90

The ISO Standard for Fortran90 has, officially, replaced that for Fortran77. It introduces a
wealth of new features many of them already in use in other high-level languages, which will
make programming easier, and facilitate the construction of portable and robust programs.
The whole of the Fortran77 Standard is included as a proper subset, so existing (standard-
conforming) Fortran programs will automatically conform also to the new Standard. Until
well-tested compilers for Fortran90 are widespread, however, most programmers are still using
Fortran77, with perhaps a few minor extensions.

1.3 Strengths and Weaknesses

Fortran has become popular and widespread because of its unique combination of properties. Its
numerical and input/output facilities are almost unrivalled while those for logic and character
handling are as good as most other languages. Fortran is simple enough that you do not need to
be a computer specialist to become familiar with it fairly quickly, yet it has features, such as the
independent compilation of program units, which allow it to be used on very large applications.
Programs written in Fortran are also more portable than those in other major languages. The
efficiency of compiled code also tends to be quite high because the language is straight-forward
to compile and techniques for handling Fortran have reached a considerable degree of reÞnement.
Finally, the ease with which existing procedures can be incorporated into new software makes
it especially easy to develop new programs out of old ones.
It cannot be denied, however, that Fortran has more than its fair share of weaknesses and

drawbacks. Many of these have existed in Fortran since it was Þrst invented and ought to have
been eliminated long ago: examples include the 6-character limit on symbolic names, the Þxed
statement layout, and the need to use statement labels.
Fortran also has rather liberal rules and an extensive system of default values: while this

reduces programming effort it also makes it harder for the system to detect the programmer�s
mistakes. In many other programming languages, for example, the data type of every variable
has to be declared in advance. Fortran does not insist on this but, in consequence, if you make
a spelling mistake in a variable name the compiler is likely to use two variables when you only
intended to use one. Such errors can be serious but are not always easy to detect.
Fortran also lacks various control and data structures which simplify programming languages

with a more modern design. These limitations, and others, are all eliminated with the advent
of Fortran90.

1 WHAT IS FORTRAN? 7

1.4 Precautions

Extensions and Portability

Computer manufacturers have a natural tendency to compete with each other by providing
Fortran systems which are �better� than before, usually by providing extensions to the language.
This does not conßict with the Fortran Standard, provided that standard-conforming programs
are still processed correctly. Indeed in the long term languages advance by the absorbtion of such
extensions. In the short term, however, their use is more problematical, since they necessarily
makes programs less portable.
When the latest Fortran Standard was issued in 1977 there was fairly widespread disappoint-

ment that it did not go just a little further in eliminating some of the tiresome restrictions
that had persisted since the early days. The US Department of Defense issued a short list of
extensions which manufacturers were encouraged to add to their Fortran77 systems. The most
important of these were the following:

� the END DO statement

� the DO WHILE loop

� the INCLUDE statement

� the IMPLICIT NONE facility

� intrinsic functions for bit-wise operations on integers.
Many Fortran systems, especially those produced in the United States, now support these

extensions but they are by no means universal and should not be used in portable programs.
One of the most irksome restrictions of Fortran77 is that symbolic names cannot be more than

six characters long. This forces programmers to devise all manner of contractions, abbreviations,
and acronyms in place of meaningful symbolic names. It is very tempting to take advantage of
systems which relax this rule but this can have serious repercussions. Consider a program which
makes use of variables called TEMPERATURE and TEMPERED. Many compilers will be quite
happy with these, though a few will reject both names on grounds of length. Unfortunately there
are also one or two compilers in existence which will simply ignore all letters after the sixth so
that both names will be taken as references to the same variable, TEMPER. Such behaviour,
while deplorable, is quite in accordance with the Standard which only requires systems to compile
programs correctly if they conform to its rules.
The only way to be certain of avoiding problems like this is to ignore such temptations entirely

and just use Standard Fortran. Many compilers provide a switch or option which can be set to
cause all non-standard syntax to be ßagged. Everything covered in this book is part of Standard
Fortran unless clearly marked to the contrary.

Guidelines

Computer programming always requires a very high standard of care and accuracy if it is to be
successful. This is even more vital when using Fortran than with some other languages, because,
as explained above, the liberal rules of Fortran make it harder for the system to detect mistakes.
To program successfully it is not enough just to conform to the rules of the language, it is also
important to defend yourself against known pitfalls.
There is a useful lesson to be learned from the failure of one of the earliest planetary probes

launched by NASA. The cause of the failure was eventually traced to a statement in its control

2 BASIC FORTRAN CONCEPTS 8

software similar to this:
DO 15 I = 1.100

when what should have been written was:
DO 15 I = 1,100

but somehow a dot had replaced the comma. Because Fortran ignores spaces, this was seen by
the compiler as:

DO15I = 1.100

which is a perfectly valid assignment to a variable called DO15I and not at all what was intended.
Fortran77 permits an additional comma to be inserted after the label in a DO statement, so

it could now be written as:
DO 15,I = 1,100

which has the great advantage that it is no longer as vulnerable to a single-point failure.
There are many hazards of this sort in Fortran, but the risk of falling victim to them can

be minimised by adopting the programming practices of more experienced users. To help you,
various recommendations and guidelines are given throughout this book. Some of the most
outdated and unsatisfactory features of Fortran are not described in the main part of the book
at all but have been relegated to section 13.
There is not room in a book of this size to go further into the techniques of program design

and software engineering. As far as possible everything recommended here is consistent with
the methods of modular design and structured programming, but you should study these topics
in more detail before embarking on any large-scale programming projects.

2 Basic Fortran Concepts

This section presents some of the basic ideas of Fortran by showing some complete examples. In
the interests of simplicity, the problems which these solve are hardly beyond the range of a good
pocket calculator, and the programs shown here do not include various reÞnements that would
usually be present in professional software. They are, however, complete working programs
which you can try out for yourself if you have access to a Fortran system. If not, it is still
worth reading through them to see how the basic elements of Fortran can be put together into
complete programs.

2.1 Statements

To start with, here is one of the simplest program that can be devised:

PROGRAM TINY

WRITE(UNIT=*, FMT=*) ’Hello, world’

END

As you can probably guess, all this program does is to send a rather trite message �Hello, world�
to your terminal. Even so its layout and structure deserve some explanation.
The program consists of three lines, each containing one statement. Each Fortran statement

must have a line to itself (or more than one line if necessary), but the Þrst six character positions
on each line are reserved for statement labels and continuation markers. Since the statements
in this example need neither of these features, the Þrst six columns of each line have been left
blank.
The PROGRAM statement gives a name to the program unit and declares that it is a main

program unit. Other types of program unit will be covered later on. The program can be

2 BASIC FORTRAN CONCEPTS 9

called anything you like provided the name conforms to the Fortran rules; the Þrst character
of a Fortran symbolic name must be a letter but, unfortunately, they cannot be more than six
characters long in total. It is generally sensible to give the same name to the program and to
the Þle which holds the Fortran source code (the original text).
The WRITE statement produces output: the parentheses enclose a list of control items which

determine where and in what form the output appears. UNIT=* selects the standard output Þle
which is normally your own terminal; FMT=* selects a default output layout (technically known
as list-directed format). Asterisks are used here, as in many places in Fortran, to select a default
or standard option. This program could, in fact, have been made slightly shorter by using an
abbreviated form of the WRITE statements:

WRITE(*,*) ’Hello, world’

Although the keywords UNIT= and FMT= are optional, they help to make the program more
readable. The items in the control list, like those in all lists in Fortran, are separated by
commas.
The control information in the WRITE statement is followed by a list of the data items to be

output: here there is just one item, a character constant which is enclosed in a pair of apostrophe
(single quote) characters.
An END statement is required at the end of every program unit. When the program is compiled

(translated into machine code) it tells the compiler that the program unit is complete; when
encountered at run-time the END statement stops the program running and returns control to
the operating system.
The Standard Fortran character set does not contain any lower-case letters so statements

generally have to be written all in upper case. But Fortran programs can process as data
any characters supported by the machine; character constants (such as the message in the last
example) are not subject to this constraint.

2.2 Expressions and Assignments

The next example solves a somewhat more realistic problem: it computes the repayments on
a Þxed-term loan (such as a home mortgage loan). The Þxed payments cover the interest and
repay part of the capital sum; the annual payment can be calculated by the following formula:

payment =
rate.amount

(1− (1 + rate)−nyears)

In this formula, rate is the annual interest rate expressed as a fraction; since it is more
conventional to quote interest rates as a percentage the program does this conversion for us.

PROGRAM LOAN

WRITE(UNIT=*, FMT=*)’Enter amount, % rate, years’

READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS

RATE = PCRATE / 100.0

REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))

WRITE(UNIT=*, FMT=*)’Annual repayments are ’, REPAY

END

This example introduces two new forms of statement: the READ and assignment statements,
both of which can be used to assign new values to variables.

2 BASIC FORTRAN CONCEPTS 10

The READ statement has a similar form to WRITE: here it reads in three numbers entered on
the terminal in response to the prompt and assigns their values to the three named variables.
FMT=* again selects list-directed (or free-format) input which allows the numbers to be given in
any convenient form: they can be separated by spaces or commas or even given one on each
line.
The fourth statement is an assignment statement which divides PCRATE by 100 and assigns

the result to another variable called RATE. The next assignment statement evaluates the loan
repayment formula and assigns the result to a variable called REPAY.
Several arithmetic operators are used in these expressions: as in most programming languages

�/� represents division and �*� represents multiplication; in Fortran �**� is used for exponen-
tiation, i.e. raising one number to the power of another. Note that two operators cannot appear
in succession as this could be ambiguous, so that instead of �**-N� the form �**(-N)� has to
be used.
Another general point concerning program layout: spaces (blanks) are not signiÞcant in

Fortran statements so they can be inserted freely to improve the legibility of the program.
When the program is run, the terminal dialogue will look something like this:

Enter amount, % rate, years

20000, 9.5, 15

Annual repayments are 2554.873

The answer given by your system may not be exactly the same as this because the number of
digits provided by list-directed formatting depends on the accuracy of the arithmetic, which
varies from one computer to another.

2.3 Integer and Real Data Types

The LOAN program would have been more complicated if it had not taken advantage of some
implicit rules of Fortran concerning data types: this requires a little more explanation.
Computers can store numbers in several different ways: the most common numerical data

types are those called integer and real. Integer variables store numbers exactly and are mainly
used to count discrete objects. Real variables are useful many other circumstances as they store
numbers using a ßoating-point representation which can handle numbers with a fractional part
as well as whole numbers. The disadvantage of the real data type is that ßoating-point numbers
are not stored exactly: typically only the Þrst six or seven decimal digits will be correct. It is
important to select the correct type for every data item in the program. In the last example,
the number of years was an integer, but all of the other variables were of real type.
The data type of a constant is always evident from its form: character constants, for example,

are enclosed in a pair of apostrophes. In numerical constants the presence of a decimal point
indicates that they are real and not integer constants: this is why the value one was represented
as �1.0� and not just �1�.
There are several ways to specify the data type of a variable. One is to use explicit type

statements at the beginning of the program. For example, the previous program could have
begun like this:

PROGRAM LOAN

INTEGER NYEARS

REAL AMOUNT, PCRATE, RATE, REPAY

Although many programming languages require declarations of this sort for every symbolic
name used in the program, Fortran does not. Depending on your point of view, this makes

2 BASIC FORTRAN CONCEPTS 11

Fortran programs easier to write, or allows Fortran programmers to become lazy. The reason
that these declarations can often be omitted in Fortran is that, in the absence of an explicit
declaration, the data type of any item is determined by the Þrst letter of its name. The general
rule is:

initial letters I-N integer type
initial letters A-H and O-Z real type.
In the preceding program, because the period of the loan was called NYEARS (and not simply

YEARS) it automatically became an integer, while all the other variables were of real type.

2.4 DO Loops

Although the annual repayments on a home loan are usually Þxed, the outstanding balance does
not decline linearly with time. The next program demonstrates this with the aid of a DO-loop.

PROGRAM REDUCE

WRITE(UNIT=*, FMT=*)’Enter amount, % rate, years’

READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS

RATE = PCRATE / 100.0

REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))

WRITE(UNIT=*, FMT=*)’Annual repayments are ’, REPAY

WRITE(UNIT=*, FMT=*)’End of Year Balance’

DO 15,IYEAR = 1,NYEARS

AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY

WRITE(UNIT=*, FMT=*) IYEAR, AMOUNT

15 CONTINUE

END

The Þrst part of the program is similar to the earlier one. It continues with another WRITE

statement which produces headings for the two columns of output which will be produced later
on.
The DO statement then deÞnes the start of a loop: the statements in the loop are executed

repeatedly with the loop-control variable IYEAR taking successive values from 1 to NYEARS. The
Þrst statement in the loop updates the value of AMOUNT by adding the annual interest to it and
subtracting the actual repayment. This results in AMOUNT storing the amount of the loan still
owing at the end of the year. The next statement outputs the year number and the latest value
of AMOUNT. After this there is a CONTINUE statement which actually does nothing but act as a
place-marker. The loop ends at the CONTINUE statement because it is attached to the label, 15,
that was speciÞed in the DO statement at the start of the loop.
The active statements in the loop have been indented a little to the right of those outside it:

this is not required but is very common practice among Fortran programmers because it makes
the structure of the program more conspicuous.
The program REDUCE produces a table of values which, while mathematically correct, is

not very easy to read:

Enter amount, % rate, years

2000, 9.5, 5

Annual repayments are 520.8728

End of Year Balance

1 1669.127

2 1306.822

2 BASIC FORTRAN CONCEPTS 12

3 910.0968

4 475.6832

5 2.9800416E-04

2.5 Formatted Output

The table of values would have a better appearance if the decimal points were properly aligned
and if there were only two digits after them. The last Þgure in the table is actually less than a
thirtieth of a penny, which is effectively zero to within the accuracy of the machine. A better
layout can be produced easily enough by using an explicit format speciÞcation instead of the
list-directed output used up to now. To do this, the last WRITE statement in the program should
be replaced with one like this:

WRITE(UNIT=*, FMT=’(1X,I9,F11.2)’) IYEAR, AMOUNT

The amended program will then produce a neater tabulation:

Enter amount, % rate, years

2000, 9.5, 5

Annual repayments are 520.8728

End of Year Balance

1 1669.13

2 1306.82

3 910.10

4 475.68

5 .00

The format speciÞcation has to be enclosed in parentheses and, as it is actually a character
constant, in a pair of apostrophes as well. The Þrst item in the format list, 1X, is needed to
cope with the carriage-control convention: it provides an additional blank at the start of each
line which is later removed by the Fortran system. There is no logical explanation for this:
it is there for compatibility with very early Fortran system. The remaining items specify the
layout of each number: I10 speciÞes that the Þrst number, an integer, should be occupy a Þeld
10 columns wide; similarly F11.2 puts the second number, a real (ßoating-point) value, into a
Þeld 11 characters wide with exactly 2 digits after the decimal point. Numbers are always right-
justiÞed in each Þeld. The Þeld widths in this example have been chosen so that the columns of
Þgures line up satisfactorily with the headings.

2.6 Functions

Fortran provides a useful selection of intrinsic functions to carry out various mathematical
operations such as square root, maximum and minimum, sine, cosine, etc., as well as various
data type conversions. You can also write your own functions. The next example, which
computes the area of a triangle, shows both forms of function in action.
The formulae for the area of a triangle with sides of length a, b, and c is:

s = (a+ b+ c)/2

area =
q
[s.(s− a).(s− b).(s− c)]

PROGRAM TRIANG

WRITE(UNIT=*,FMT=*)’Enter lengths of three sides:’

2 BASIC FORTRAN CONCEPTS 13

READ(UNIT=*,FMT=*) SIDEA, SIDEB, SIDEC

WRITE(UNIT=*,FMT=*)’Area is ’, AREA3(SIDEA,SIDEB,SIDEC)

END

FUNCTION AREA3(A, B, C)

*Computes the area of a triangle from lengths of sides

S = (A + B + C)/2.0

AREA3 = SQRT(S * (S-A) * (S-B) * (S-C))

END

This program consists of two program units. The Þrst is the main program, and it has as similar
form to those seen earlier. The only novel feature is that the list of items output by the WRITE

statement includes a call to a function called AREA3. This computes the area of the triangle. It
is an external function which is speciÞed by means of a separate program unit technically known
as a function subprogram.
The external function starts with a FUNCTION statement which names the function and spec-

iÞes its set of dummy arguments. This function has three dummy arguments called A, B, and
C. The values of the actual arguments, SIDEA, SIDEB, and SIDEC, are transferred to the corre-
sponding dummy arguments when the function is called. Variable names used in the external
function have no connection with those of the main program: the actual and dummy argument
values are connected only by their relative position in each list. Thus SIDEA transfers its value
to A, and so on. The name of the function can be used as a variable within the subprogram unit;
this variable must be assigned a value before the function returns control, as this is the value
returned to the calling program.
Within the function the dummy arguments can also be used as variables. The Þrst assignment

statement computes the sum, divides it by two, and assigns it to a local variable, S; the second
assignment statement uses the intrinsic function SQRT which computes the square-root of its
argument. The result is returned to the calling program by assigning it to the variable which
has the same name as the function.
The END statement in a procedure does not cause the program to stop but just returns control

to the calling program unit.
There is one other novelty: a comment line describing the action of the function. Any line

of text can be inserted as a comment anywhere except after an END statement. Comment lines
have an asterisk in the Þrst column.
These two program units could be held on separate source Þles and even compiled separately.

An additional stage, usually called linking, is needed to construct the complete executable
program out of these separately compiled object modules. This seems an unnecessary overhead
for such simple programs but, as described in the next section, it has advantages when building
large programs.
In this very simple example it was not really necessary to separate the calculation from the

input/output operations but in more complicated cases this is usually a sensible practice. For
one thing it allows the same calculation to be executed anywhere else that it is required. For
another, it reduces the complexity of the program by dividing the work up into small independent
units which are easier to manage.

2.7 IF-blocks

Another important control structure in Fortran is the IF statement which allows a block of
statements to be executed conditionally, or allows a choice to be made between different courses

2 BASIC FORTRAN CONCEPTS 14

of action.
One obvious defect of the function AREA3 is that has no protection against incorrect input.

Many sets of three real numbers could not possibly form the sides of a triangle, for example
1.0, 2.0, and 7.0. A little analysis shows that in all such impossible cases the argument of the
square root function will be negative, which is illegal. Fortran systems should detect errors like
this at run-time but will vary in their response. Even so, a message like �negative argument for
square-root� may not be enough to suggest to the user what is wrong. The next version of the
function is slightly more user-friendly:

REAL FUNCTION AREA3(A, B, C)

*Computes the area of a triangle from lengths of its sides.

*If arguments are invalid issues error message and returns zero.

REAL A, B, C

S = (A + B + C)/2.0

FACTOR = S * (S-A) * (S-B) * (S-C)

IF(FACTOR .LE. 0.0) THEN

WRITE(UNIT=*, FMT=*)’Impossible triangle’, A, B, C

AREA3 = 0.0

ELSE

AREA3 = SQRT(FACTOR)

END IF

END

The IF statement works with the ELSE and END IF statements to enclose two blocks of code.
The statements in the Þrst block are only executed if the expression in the IF statement is
true, those in the second block only if it is false. The statements in each block are indented for
visibility, but this is, again, just a sensible programming practice.
With this modiÞcation, the value of FACTOR is tested and if it is negative or zero then an

error message is produced; AREA3 is also set to an impossible value (zero) to ßag the mistake.
Note that the form �.LE.� is used because the less-than-or-equals character, �<�, is not present
in the Fortran character set. If S is positive the calculation proceeds as before.

2.8 Arrays

Fortran has good facilities for handling arrays. They can have up to seven dimensions. The
program STATS reads a set of real numbers from a data Þle and puts them into a one-
dimensional array. It then computes their mean and standard deviation. Given an array of
values x1, x2, x3, ...xN , the mean µ standard deviation σ are given by:

µ =

P
xi

N

σ2 =
(
P
(xi − σ)2)
(N − 1) =

(
P
x2

i −Nσ)
(N − 1)

To simplify this program, it will be assumed that the Þrst number in the Þle is an integer
which tells the program how many real data points follow.

PROGRAM STATS

CHARACTER FNAME*50

2 BASIC FORTRAN CONCEPTS 15

REAL X(1000)

WRITE(UNIT=*, FMT=*) ’Enter data file name:’

READ(UNIT=*, FMT=’(A)’) FNAME

OPEN(UNIT=1, FILE=FNAME, STATUS=’OLD’)

*Read number of data points NPTS

READ(UNIT=1, FMT=*) NPTS

WRITE(UNIT=*, FMT=*) NPTS, ’ data points’

IF(NPTS .GT. 1000) STOP ’Too many data points’

READ(UNIT=1, FMT=*) (X(I), I = 1,NPTS)

CALL MEANSD(X, NPTS, AVG, SD)

WRITE(UNIT=*, FMT=*) ’Mean =’, AVG, ’ Std Deviation =’, SD

END

SUBROUTINE MEANSD(X, NPTS, AVG, SD)

INTEGER NPTS

REAL X(NPTS), AVG, SD

SUM = 0.0

SUMSQ = 0.0

DO 15, I = 1,NPTS

SUM = SUM + X(I)

SUMSQ = SUMSQ + X(I)**2

15 CONTINUE

AVG = SUM / NPTS

SD = SQRT(SUMSQ - NPTS * AVG)/(NPTS-1)

END

This program has several new statement forms.
The CHARACTER statement declares that the variable FNAME is to hold a string of 50 characters:

this should be long enough for the Þle-names used by most operating systems.
The REAL statement declares an array X with 1000 elements numbered from X(1) to X(1000).
The READ statement uses a format item A which is needed to read in a character string: A

originally stood for �alpha-numeric�.
The OPEN statement then assigns I/O unit number one (any small integer could have been

used) to the Þle. This unit number is needed in subsequent input/output statements. The item
STATUS=’OLD’ is used to specify that the Þle already exists.
The IF statement is a special form which can replace an IF-block where it would only contain

one statement: its effect is to stop the program running if the array would not be large enough.
The READ statement which follows it has a special form known as an implied-DO-loop: this

reads all the numbers from the Þle in to successive elements of the array X in one operation.
The CALL statement corresponds to the SUBROUTINE statement in the same way that a function

reference corresponded to a FUNCTION statement. The difference is that the arguments X and
NPTS transfer information into the subroutine, whereas AVG and SD return information from it.
The direction of transfer is determined only by the way the dummy arguments are used within
the subroutine. An argument can be used to pass information in either direction, or both.
The INTEGER statement is, as before, not really essential but it is good practice to indicate

clearly the data type of every procedure argument.
The REAL statement declares that X is an array but uses a special option available only to

dummy arguments: it uses another argument, NPTS, to specify its size and makes it an adjustable
array. Normally in Fortran array bounds must be speciÞed by constants, but the rules are relaxed

3 FORTRAN IN PRACTICE 16

for arrays passed into procedures because the actual storage space is already allocated in the
calling program unit; the REAL statement here merely speciÞes how many of the 1000 elements
already allocated are actually to be used within the subroutine.
The rest of the subroutine uses a loop to accumulate the sum of the elements in SUM, and

the sum of their squares in SUMSQ. It then computes the mean and standard deviation using
the usual formulae, and returns these values to the main program, where they are printed out.

3 Fortran in Practice

This section describes the steps required to turn a Fortran program from a piece of text into
executable form. The main operation is that of translating the original Fortran source code into
the appropriate machine code. On a typical Fortran system this is carried out in two separate
stages. This section explains how this works in more detail.
These descriptions differ from those in the rest of the book in two ways. Firstly, it is not

essential to understand how a Fortran system works in order to use it, just as you do not have
to know how an internal combustion engine works in order to drive a car. But, in both cases,
those who have some basic understanding of the way in which the machine works Þnd it easier
to get the best results. This is especially true when things start to go wrong � and most people
Þnd that things go wrong all too easily when they start to use a new programming language.
Secondly the contents of this section are much more system-dependent than all the others

in the book. The Fortran Standard only speciÞes what a Fortran program should do when it
is executed, it has nothing directly to say about the translation process. In practice, however,
nearly all Fortran systems work in much the same way, so there should not be too many dif-
ferences between the �typical� system described here and the one that you are actually using.
Regrettably the underlying similarities are sometimes obscured by differences in the terminology
that different manufacturers use.

3.1 The Fortran System

The two main ways of translating a program into machine code are to use an interpreter or a
compiler.
An interpreter is a program which stays in control all the while the program is running. It

translates the source code into machine code one line at a time and then executes that line
immediately. It then goes on to translate the next, and so on. If an error occurs it is usually
possible to correct the mistake and continue running the program from the point at which it left
off. This can speed up program development considerably. The main snag is that all non-trivial
programs involve forms of repetition, such as loops or procedure calls. In all these cases the same
lines of source code are translated into machine code over and over again. Some interpreters are
clever enough to avoid doing all the work again but the overhead cannot be eliminated entirely.
The compiler works in an entirely different way. It is an independent program which translates

the entire source code into machine code at once. The machine code is usually saved on a Þle,
often called an executable image, which can then be run whenever it is needed. Because each
statement is only translated once, but can be executed as many times as you like, the time take
by the translation process is less important. Many systems provide what is called an optimising
compiler which takes even more trouble and generates highly efficient machine code; optimised
code will try to make the best possible use of fast internal registers and the compiler will analyse
the source program in blocks rather than one line at a time. As a result, compiled programs
usually run an order of magnitude faster than interpreted ones. The main disadvantage is that

3 FORTRAN IN PRACTICE 17

if the program fails in any way, it is necessary to edit the source code and recompile the whole
thing before starting again from the beginning. The error messages from a compiled program
may also be less informative than those from an interpreter because the original symbolic names
and line numbers may not be retained by the compiler.
Interpreters, being more �user-friendly�, are especially suitable for highly interactive use

and for running small programs produced by beginners. Thus languages like APL, Basic, and
Logo are usually handled by an interpreter. Fortran, on the other hand, is often used for jobs
which consume signiÞcant amounts of computer time: in some applications, such as weather
forecasting, the results would simply be of no use if they were produced more slowly. The
speed advantage of compilers is therefore of great importance and in practice almost all Fortran
systems use a compiler to carry out the translation.

Separate Compilation

The principal disadvantage of a compiler is the necessity of re-compiling the whole program after
making any alteration to it, no matter how small. Fortran has partly overcome this limitation
by allowing program units to be compiled separately; these compiled units or modules are linked
together afterwards into an executable program.
A Fortran compiler turns the source code into what is usually called object code: this con-

tains the appropriate machine-code instructions but with relative memory addresses rather than
absolute ones. All the program units can be compiled together, or each one can be compiled
separately. Either way a set of object modules is produced, one from each program unit. The
second stage, which joins all the object modules together, is usually known as linking, but other
terms such as loading, link-editing, and task-building are also in use. The job of the linker is
to collect up all these object modules, allocate absolute addresses to each one, and produce a
complete executable program, also called an executable image.
The advantage of this two-stage system is that if changes are made to just one program

unit then only that one has to be re-compiled. It is, of course, necessary to re-link the whole
program. The operations which the linker performs are relatively simple so that linkers ought
to be fast. Unfortunately this is not always so, and on some systems it can take longer to link
a small program than to compile it.

3.2 Creating the Source Code

The Þrst step after writing a program is to enter it into the computer: these Þles are known as
the source code. Fortran systems do not usually come with an editor of their own: the source
Þles can be generated using any convenient text editor or word processor.
Many text editors have options which ease the drudgery of entering Fortran statements. On

some you can deÞne a single key-stroke to skip directly to the start of the statement Þeld at
column 7 (but if the source Þles are to conform to the standard this should work by inserting a
suitable number of spaces and not a tab character). An even more useful feature is a warning
when you cross the right-margin of the statement Þeld at column 72. Most text editors make it
easy to delete and insert whole words, where a word is anything delimited by spaces. It helps
with later editing, therefore, to put spaces between items in Fortran statements. This also makes
the program more readable.
Most programs will consist of several program units: these may go on separate Þles, all on

one Þle, or any combination. On most systems it is not necessary for the main program unit to
come Þrst. When Þrst keying in the program it may seem simpler to put the whole program on
one Þle, but during program development it is usually more convenient to have each program

3 FORTRAN IN PRACTICE 18

unit on a separate Þle so that they can be edited and compiled independently. It minimises
confusion if each source Þle has the same name as the (Þrst) program unit that it contains.

INCLUDE Statements

Many systems provide a pseudo-statement called INCLUDE (or sometimes INSERT which inserts
the entire contents of a separate text Þle into the source code in place of the INCLUDE statement.
This feature can be particularly useful when the same set of statements, usually speciÞcation
statements, has to be used in several different program units. Such is often the case when
deÞning a set of constants using PARAMETER statements, or when declaring common blocks with
a set of COMMON statements. INCLUDE statements reduce the key-punching effort and the risk
of error. Although non-standard, INCLUDE statements do not seriously compromise portability
because they merely manipulate the source Þles and do not alter the source code which the
compiler translates.

3.3 Compiling

The main function of a Fortran compiler is to read a set of source Þles and write the corresponding
set of object modules to the object Þle.
Most compilers have a number of switches or options which can be set to control how the

compiler works and what additional output it produces. Some of the more useful ones, found
on many systems, are described below.

� Almost all compilers can produce a listing Þle: a text Þle containing a copy of the source
code, with the lines numbered, and with error messages and other useful information
attached. A list of all the symbolic names and labels used in the program unit is often
provided: this should be checked for unexpected entries as they may be the result of
spelling mistakes.

� An even more useful addition to the listing is a cross-reference table: this lists every place
that each symbolic name has been used. Good compilers indicate which names have only
been used once as these often indicate a programming mistake.

� Another widely available option is the detection of syntax which does not conform to the
Fortran Standard: this helps to ensure program portability.

� Often it is possible to choose the optimization level. During program development a low
level of optimization should be selected if this makes the compiler run faster; it may
improve the error detection. Highly optimised machine code may execute faster but if the
source code lines are rearranged error messages may be less helpful.

� Many systems allow additional code to be included which check for errors at run-time.
Errors such as over-running the bounds of an array or a character string, or arithmetic
over-ßow can usually be trapped. Such errors are not uncommon, so this assistance is very
valuable. Some programming manuals suggest that these options should only be selected
during program development and switched-off thereafter in the interests of speed. This is
rather like wearing seat-belts in the car only while you are learning to drive and ignoring
them as soon as you are allowed out on the motorway. Run-time checks do not usually
reduce the execution speed noticeably.

3 FORTRAN IN PRACTICE 19

3.4 Linking

At its simplest, the linker just takes the set of object modules produced by the compiler and links
them all together into an executable image. One of these modules must correspond to the main
program unit, the other modules will correspond to procedures and to block data subprogram
units.
It often happens that a number of different programs require some of the same computations

to be carried out. If these calculations can be turned into procedures and linked into each
program it can save a great deal of programming effort, especially in the long run. This �building
block� approach is particularly beneÞcial for large programs. Many organisations gradually
build up collections of procedures which become an important software resource. Procedures
collected in this way tend to be fairly reliable and free from bugs, if only because they have been
extensively tested and de-bugged in earlier applications.

Object Libraries

It obviously saves on compilation time if these commonly-used procedures can be kept in com-
piled form as object modules. Almost all operating systems allow a collection of object modules
to be stored in an object library (sometimes known as a pre-compiled or relocatable-code li-
brary). This is a Þle containing a collection of object modules together with an index which
allows them to be extracted easily. Object libraries are not only more efficient but also easier
to use as there is only one Þle-name to specify to the linker. The linker can then work out for
itself which modules are needed to satisfy the various CALL statements and function references
encountered in the preceding object modules. Object libraries also simplify the management
of a procedure collection and may reduce the amount of disc space needed. There are usually
simple ways of listing the contents of an object library, deleting modules from it, and replacing
modules with new versions.
All Fortran systems come with a system library which contains the object modules for various

intrinsic functions such as SIN, COS, and SQRT. This is automatically scanned by the linker and
does not have to be speciÞed explicitly.
Software is often available commercially in the form of procedure libraries containing modules

which may be linked into any Fortran program. Those commonly used cover Þelds such as
statistics, signal processing, graphics, and numerical analysis.

Linker Options

The order of the object modules supplied to the linker does not usually matter although some
systems require the main program to be speciÞed Þrst. The order in which the library Þles
are searched may be important, however, so that some care has to be exercised when several
different libraries are in use at the same time.
The principal output of the linker is a single Þle usually called the executable image. Most

linkers can also produce a storage map showing the location of the various modules in memory.
Sometimes other information is provided such as symbol tables which may be useful in debugging
the program.

3.5 Program Development

The program development process consists of a number of stages some of which may have to be
repeated several times until the end product is correct:

3 FORTRAN IN PRACTICE 20

1. Designing the program and writing the source-code text.

2. Keying in the text to produce a set of Fortran source Þles.

3. Compiling the source code to produce a set of object modules.

4. Linking the object modules and any object libraries into a complete executable image.

5. Running the executable program on some test data and checking the results.

The main parts of the process are shown in the diagram below.

LINKER

COMPILER

'

&

$

%
Libraries...

'

&

$

%
Executable

program

'

&

$

%
optional

linker-map

'

&

$

%
Object-code

'

&

$

%
optional

source-listing

'

&

$

%
Source-code

- -

-

?

?

?

?

Figure 1: Compiling and Linking

4 PROGRAM STRUCTURE AND LAYOUT 21

Handling Errors

Things can go wrong at almost every stage of the program development process for a variety
of reasons, most of them the fault of the programmer. Naturally the Fortran system cannot
possibly detect all the mistakes that it is possible for human programmers to make. Errors in
the syntax of Fortran statements can usually be detected by the compiler, which will issue error
messages indicating what is wrong and, if possible, where.
Other mistakes will only come to light at the linking stage. If, for example, you misspell

the name of a subroutine or function the compiler will not be able to detect this as it only
works on one program unit at a time, but the linker will say something like �unsatisÞed external
reference�. This sort of message will sometimes appear if you misspell the name of an array
since array and function references can have the same form.
Most errors that occur at run-time are the result of programmer error, or at least failure

to anticipate some failure mode. Even things like division by zero or attempting to access
an array element which is beyond its declared bounds can be prevented by sufficiently careful
programming.
There is, however, a second category of run-time error which no amount of forethought can

avoid: these nearly all involve the input/output system. Examples include trying to open a
Þle which no longer exists, or Þnding corrupted data on an input Þle. For this reason most
input/output errors can be trapped, using the IOSTAT= or ERR= keywords in any I/O statement.
There is no way of trapping run-time errors in any other types of statement in Standard Fortran.
But, just because a program compiles, links, and runs without apparent error, it is not safe to

assume that all bugs have been eliminated. There are some types of mistake which will simply
give you the wrong answer. The only way to become conÞdent that a program is correct is to
give it some test data, preferably for a case where the results can be calculated independently.
When a program is too elaborate for its results to be predictable it should be split into sections
which can be checked separately.

4 Program Structure and Layout

This section explains the rules for program construction and text layout. A complete Fortran
program is composed of a number of separate program units. Each of these can contain both
statements and comment lines. Statements are formed from items such as keywords and symbolic
names. These in turn consist of characters.

4.1 The Fortran Character Set

The only characters needed to write Fortran programs, and the only ones that should be used
in portable software, are those in the Fortran character set:

the 26 upper-case letters A B C ... X Y Z

the 10 digits 0 1 2 3 4 5 6 7 8 9

and 13 special characters:

4 PROGRAM STRUCTURE AND LAYOUT 22

+ plus - minus
* asterisk / slash

blank = equals
(left parenthesis) right parenthesis
. decimal point , comma
’ apostrophe : colon
$ currency symbol

Although this character set is somewhat limited, it is at least universally available, which helps
to make programs portable. What suffers is program legibility: lower-case letters are absent
and it is necessary to resort to ugly constructions like .LT. and .GT. to represent operators like
< and >. Some of the special characters, such as the asterisk and parentheses, are also rather
overloaded with duties.

Blanks

The blank, or space, character is ignored everywhere in Fortran statements (except within
character constants, which are enclosed in a pair of apostrophes). Although you do not need
to separate items in Fortran statements with blanks, it is good practice to include a liberal
helping of them since they improve legibility and often simplify editing. The only limitation (as
explained below) is that statement lines must not extend beyond column 72.

Currency Symbol

The currency symbol has no Þxed graphic representation: it appears on most systems as the
dollar �$�, but other forms such as �$� equally valid. This variability does not matter much
because the currency symbol is not actually needed in Standard Fortran syntax.

Other Characters

Most computers have a character set which includes many other printable characters, for example
lower-case letters, square brackets, ampersands and per-cent signs. Any printable characters
supported by the machine may be used in comment lines and within character constants.
The Fortran character set does not include any carriage-control characters such as tab,

carriage-return, or form-feed, but formatted WRITE statements can be used to produce pagi-
nated and tabulated output Þles.
Fortran programs can process as data any characters supported by the local hardware. The

Fortran Standard is not based on the use of any particular character code but it requires its
character comparison functions to use the collating sequence of the American Standard Code
for Information Interchange (ASCII). Further details are given in section 7.6.

4.2 Statements and Lines

The statement is the smallest unit of a Fortran program, corresponding to what is called an
instruction or command in some programming languages. Most types of statement start with a
keyword which consists of one (or sometimes two) English words describing the main action of
that statement, for example: READ, DO, ELSE IF, GO TO. Since blanks are ignored, compound
keywords can be written either as one word or two: ELSEIF or ELSE IF (but the latter seems
easier to read).

4 PROGRAM STRUCTURE AND LAYOUT 23

The rules for statement layout are an unfortunate relic of punched-card days. Every statement
must start on a new line and each line is divided into three Þxed Þelds:

� columns 1 to 5 form the label Þeld,

� column 6 forms the continuation marker Þeld,
� columns 7 to 72 form the statement Þeld.

Since labels and continuation markers are only needed on a few statements, the Þrst six
columns of most lines are left blank.
Any characters in column 73 or beyond are likely to be ignored (columns 73 to 80 were once

used to hold card sequence numbers). This invisible boundary after column 72 demands careful
attention as it can have very pernicious effects: it is possible for a statement to be truncated
at the boundary but still be syntactically correct, so that the compiler will not detect anything
wrong.

Continuation Lines

Statements do not have to Þt on a single line. The initial line of each statement should have a
blank in column 6, and all subsequent lines, called continuation lines, must have some character
other than blank (or the digit zero) in column 6. Up to 19 continuation lines are allowed, i.e.
20 in total. The column layout needed with continuation lines is illustrated here:

columns

123456789...

IF(REPLY .EQ. ’Y’ .OR. REPLY .EQ. ’y’ .OR.

$ REPLY .EQ. ’T’ .OR. REPLY .EQ. ’t’) THEN

The currency symbol makes a good continuation marker since if accidentally misplaced into an
adjacent column it would be almost certain to produce an error during compilation.
The END statement is an exception to the continuation rule: it may not be followed by

continuation lines and no other statement may have an initial line which just contains the
letters �END�. Neither rule causes many problems in practice.
Programs which make excessive use of continuation lines can be hard to read and to modify:

it is generally better, if possible, to divide a long statement into several shorter ones.

Comment Lines

Comments form an important part of any computer program even though they are completely
ignored by the compiler: their purpose is to help any human who has to read and understand
the program (such as the original programmer six months later).
Comments in Fortran always occupy a separate line of text; they are marked by an asterisk

in the Þrst column. For example:

*Calculate the atmospheric refraction at PRESS mbar.

REF = PRESS * (0.1594 + 1.96E-2 * A + 2E-5 * A**2)

*Correct for the temperature T (Celsius)

TCOR = (273.0 + T) * (1.0 + 0.505 * A + 8.45E-2 * A**2)

A comment may appear at any point in a program unit except after the END statement (unless
another program unit follows, in which case it will form the Þrst line of the next unit). A

4 PROGRAM STRUCTURE AND LAYOUT 24

completely blank line is also allowed and is treated as a blank comment. This means that a
blank line is not actually permitted after the last END statement of a program.
There is no limit to the number of consecutive comment lines which may be used; comments

may also appear in the middle of a sequence of continuation lines. To conform to the Fortran
Standard, comment lines should not be over 72 characters long, but this rule is rarely enforced.
Comments may include characters which are not in the Fortran character set. It helps to

distinguish comments from code if they are mainly written in lower-case letters (where available).
It is also good practice for comments to precede the statements they describe rather than follow
them.
Some systems allow end-of-line comments, usually prefaced by an exclamation mark: this is

not permitted by the Fortran standard. For compatibility with Fortran66 comments can also
be denoted by the letter C in column 1.

Statement Labels

A label can be attached to any statement. There are three reasons for using labels:

� the end of each DO-loop is speciÞed by a label given in the DO statement;

� every FORMAT statement must have a label attached as that is how READ and WRITE state-
ments refer to it;

� any executable statement may have a label attached so that control may be transferred to
it, for example by a GO TO statement.

Example:

*Read numbers from input file until it ends, add them up.

SUM = 0.0

100 READ(UNIT=IN, FMT=200, END=9999) VALUE

200 FORMAT(F20.0)

SUM = SUM + VALUE

GO TO 100

9999 WRITE(UNIT=*, FMT=*)’SUM of values is’, SUM

Each label has the form of an unsigned integer in the range 1 to 99999. Blanks and leading zeros
are ignored. The numerical value is irrelevant and cannot be used in a calculation at all. The
label must appear in columns 1 to 5 of the initial line of the statement. In continuation lines
the label Þeld must be blank.
A label must be unique within a program unit but labels in different program units are quite

independent. Although any statement may be labelled, it only makes sense to attach a label to
a FORMAT statement or an executable statement, since there is no way of using a label on any
other type of statement.
Statement labels are unsatisfactory because nearly all of them mark a point to which control

could be transferred from elsewhere in the program unit. This makes it much harder to un-
derstand a program with many labelled statements. Unfortunately at present one cannot avoid
using labels altogether in Fortran. If labels are used at all they should appear in ascending order
and preferably in steps of 10 or 100 to allow for changes. Labels do not have to be right-justiÞed
in the label Þeld.

4 PROGRAM STRUCTURE AND LAYOUT 25

4.3 Program Units

A complete executable program consists of one or more program units. There is always one
(and only one) main program unit: this starts with a PROGRAM statement. There may also be
any number of subprogram units of any of the three varieties:

� subroutine subprograms: these start with a SUBROUTINE statement

� function subprograms, also known as external functions: these start with a FUNCTION

statement

� block data subprograms: these start with a BLOCK DATA statement.

Subroutines and external functions are known collectively as external procedures; block data
subprograms are not procedures and are used only for the special purpose of initialising the
contents of named common blocks.
Every program unit must end with an END statement.

Procedures

Subroutines and external functions are collectively known as external procedures: they are
described in full in section 9. A procedure is a self-contained sequence of operations which can
be called into action on demand from elsewhere in the program. Fortran supplies a number
of intrinsic functions such as SIN, COS, TAN, MIN, MAX, etc. These are procedures which are
automatically available when you need to use them in expressions. External functions can be
used in similar ways: there may be any number of arguments but only one value is returned via
the function name.
The subroutine is a procedure of more general form: it can have any number of input and

output arguments but it is executed only in response to an explicit CALL statement.
Procedures may call other procedures and so on, but a procedure may not call itself directly

or indirectly; Fortran does not support recursive procedure calls.
Most Fortran systems allow procedures to be written in other languages and linked with

Fortran modules into an executable program. If the procedure interface is similar to that of a
Fortran subroutine or function this presents no problem.
The normal way to transfer information from one program unit to another is to use the

argument list of the procedure as described in section 9, but it is also possible to use a common
block: a shared area of memory. This facility, which is less modular, is described in section 12.

4.4 Statement Types and Order

Fortran statements are either executable or non-executable. The compiler translates executable
statements directly into a set of machine code instructions. Non-executable statements are
mainly used to tell the compiler about the program; they are not directly translated into machine
code. The END statement is executable and so are all those in the lowest right-hand box of the
table below; all other statements are non-executable.
The general order of statements in a program unit is:

� Program unit header (PROGRAM, SUBROUTINE, FUNCTION, or BLOCK DATA statement)

� SpeciÞcation statements
� Executable statements

4 PROGRAM STRUCTURE AND LAYOUT 26

� END statement.

The table below shows the complete statement ordering rules: the statements listed in each
box can be intermixed with those in boxes on the same horizontal level (thus PARAMETER state-
ments can be intermixed with IMPLICIT statements) but those in boxes separated vertically must
appear in the proper order in each program unit (thus all statement functions must precede all
executable statements).

PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA

IMPLICIT

PARAMETER Type statements:
INTEGER, REAL, DOUBLE PRECISION,

COMPLEX, LOGICAL, CHARACTER

Other specification statements:
COMMON, DIMENSION, EQUIVALENCE,

EXTERNAL, INTRINSIC, SAVE

FORMAT Statement function statements
DATA Executable statements:

BACKSPACE, CALL, CLOSE, CONTINUE, DO,

ELSE, ELSE IF, END IF, GO TO, IF,

INQUIRE, OPEN, READ, RETURN, REWIND,

STOP, WRITE, assignment statements.

END

Execution Sequence

A program starts by executing the Þrst executable statement of the main program unit. Exe-
cution continues sequentially unless control is transferred elsewhere: an IF or GO TO statement,
for example, may transfer control to another part of the same program unit, whereas a CALL

statement or function reference will transfer control temporarily to a procedure.
A program continues executing until it reaches a STOP statement in any program unit, or the

END statement of the main program unit, or until a fatal error occurs. When a program termi-
nates normally (at STOP or END) the Fortran system closes any Þles still open before returning
control to the operating system. But when a program is terminated prematurely Þles, especially
output Þles, may be left with incomplete or corrupted records.

4.5 Symbolic Names

Symbolic names can be given to items such as variables, arrays, constants, functions, subroutines,
and common blocks. All symbolic names must conform to the following simple rule: the Þrst
character of each name must be a letter, this may be followed by up to Þve more letters or digits.
Here are some examples of valid symbolic names:

I MATRIX VOLTS PIBY4 OLDCHI TWOX R2D2 OUTPUT

And here are some names which do not conform to the rules:

COMPLEX (too many letters)
MAX EL (underscore is not allowed)
2PI (starts with a digit)
Height (lower-case letters are not allowed).

4 PROGRAM STRUCTURE AND LAYOUT 27

It is best to avoid using digits in names unless the meaning is clear, because they are often
misread. The digit 1 is easily confused with the letter I, similarly 0 looks much like the letter
O on many devices.
The six-character limit on the length of a symbolic name is one of the most unsatisfactory

features of Fortran: programs are much harder to understand if the names are cryptic acronyms
or abbreviations, but with only six characters there is little choice. Although many systems
do not enforce the limit (and Fortran90 allows names up to 31 characters long), at present the
only way to ensure software portability is to keep to it strictly. There is a further problem with
items which have an associated data type (constants, variables, arrays, and functions). Unless
the data type is declared explicitly in a type statement, it is determined by the initial letter of
the name. This may further restrict the choice.

Scope of Symbolic Names

Symbolic names which identify common blocks and program units of all types are global in
scope, i.e. their name must be unique in the entire executable program. Names identifying all
other items (variables, arrays, constants, statement functions, intrinsic functions, and all types
of dummy argument) are local to the program unit in which they are used so that the same
name may be used independently in other program units.
To see the effect of these rules here is a simple example. Suppose your program contains a

subroutine called SUMMIT. This is a global name so it cannot be used as the name of global
item (such as an external procedure or a common block) in the same executable program. In the
SUMMIT subroutine and in any other program unit which calls it the name cannot be used for a
local item such as a variable or array. In all other program units, however, including those which
call SUMMIT indirectly, the name SUMMIT can be used freely e.g. for a constant, variable, or
array.
The names of global items need to be chosen more carefully because it is harder to alter

them at a later stage; it can be difficult to avoid name clashes when writing a large program
or building a library of procedures unless program unit names are allocated systematically. It
seems appropriate for procedures to have names which are verb-like. If you Þnd it difficult to
devise sensible procedure names remember that the English language is well stocked with three
and four-letter verbs which form a good basis, for example: DO, ASK, GET, PUT, TRY, EDIT,
FORM, LIST, LOAD, SAVE, PLOT. By combining a word like one of these with one or two
additional letters it is possible to make up a whole range of procedure names.

Reserved Words

In most computer languages there is a long list of words which are reserved by the system and
cannot be used as symbolic names: Cobol programmers, for example, have to try to remember
nearly 500 of them. In Fortran there are no reserved words. Some Fortran keywords (for instance
DATA, END, and OPEN) are short enough to be perfectly valid symbolic names. Although it is not
against the rules to do this, it can be somewhat confusing. The names of the intrinsic functions
(such as SQRT, MIN, CHAR) are, technically, local names and there is nothing to prevent you
using them for your own purposes, but this is not generally a good idea either. For example, if
you choose to use the name SQRT for a local variable you will have more difficulty in computing
square-roots in that program unit. It is even more unwise to use the name of an intrinsic function
as that of an external procedure because in this case the name has to be declared in an EXTERNAL

statement in every program unit in which it is used in this way.

5 CONSTANTS, VARIABLES, AND ARRAYS 28

4.6 PROGRAM Statement

The PROGRAM statement can only appear at the start of the main program unit. Its only function
is to indicate what type of program unit it is and to give it symbolic name. Although this name
cannot be used anywhere else in the program, it may be used by the Fortran system to identify
error messages etc. The general form is simply:

PROGRAM name
Where name is a symbolic name. This name is global in scope and may not be used elsewhere
in the main program nor as a global name in any other program unit. For compatibility with
Fortran66 the PROGRAM statement is optional. This can have unexpected effects: if you forget
use a SUBROUTINE or FUNCTION statement at the start of a procedure the compiler will assume
it to be a (nameless) main program unit. Since this will normally result in two main program
units, the linker is likely to detect the mistake.

4.7 END Statement

The END statement must appear as the last statement of every program unit. It simply consists
of the word:

END

which may not be followed by any continuation lines (or comments). The END statement is
executable and may have a label attached. If an END statement is executed in a subprogram
unit, i.e. a procedure, it returns control to the calling unit; if an END statement is executed in
the main program it closes any Þles which are open, stops the program, and returns control to
the operating system.

5 Constants, Variables, and Arrays

This section deals with the data-storage elements of Fortran: constants, variables, and arrays.
These all possess an important property called data type. The data type of an item determines
what sort of information it holds and the operations that can be performed on it.

5.1 Data Types

All the information processed by a digital computer is held internally in the form of binary digits
or bits. Suitable collections of bits can be used to represent many different types of data including
numbers and strings of characters. It is not necessary to know how the information is represented
internally in order to write Fortran programs, only that there is a different representation for
each type of data. The data type of each item also determines what operations can be carried
out on it: thus arithmetic operations can be carried out on numbers, whereas character strings
can be split up or joined together. The data type of each item is Þxed when the program is
written.
Fortran, with its emphasis on numerical operations, has four data types just for numbers.

These are collectively known as the arithmetic data types. Arithmetic expressions can include
mixtures of data types and, in most cases, automatic type conversions are provided. In other
circumstances, however, especially in procedure calls, there is no provision for automatic type
conversion and it is essential for data types to match exactly.
The range and precision of the arithmetic data types are not speciÞed by the Standard:

typical values are indicated below, but the only way to be sure is to check the manuals provided
with your own Fortran system.

5 CONSTANTS, VARIABLES, AND ARRAYS 29

Several intrinsic functions are available to convert from one data type to another. Conversion
from character strings to numbers and vice-versa can be complicated; these are best carried out
with the internal Þle READ and WRITE statements (see section 10.3).
There are, as yet, no user-deÞned or structured data types in Fortran.

Standard Data Types

The table below summarises the properties of the six data types provided in Standard Fortran:
Data type Characteristics

Integer Whole numbers stored exactly.
Real Numbers, which may have fractional parts, stored using a ßoating-

point representation with limited precision.
Double
Precision

Similar to real but with greater precision.

Complex Complex numbers: stored as an ordered pair of real numbers.
Logical A Boolean value, i.e. one which is either true or false.
Character A string of characters of Þxed length.

The Þrst four types (integer, real, double precision, and complex) all hold numerical infor-
mation and are collectively known as arithmetic data types.

Integer Type

The integer data type can only represent whole numbers but they are stored exactly in all
circumstances. Integers are often used to count discrete objects such as elements of an array,
characters in a string, or iterations of a loop.
The range of numbers covered by the integer type is system-dependent. The majority of

computers use 32 bits for their integer arithmetic (1 bit for the sign and 31 for the magnitude)
giving a number range of −2, 147, 483, 648 to +2, 147, 483, 647. Some systems have an even
larger integer range but a few very small systems only allow 16-bit integer arithmetic so that
their integer range is only −32, 768 to +32, 767.

Real Type

Most scientiÞc applications use the real data type more than anything else. Real values are stored
internally using a ßoating-point representation which gives a larger range than the integer type
but the values are not, in general, stored exactly. Both the range and precision are machine
dependent.
In practice most machines use at least 32 bits to store real numbers. Many systems now

use the IEEE Standard representation: for 32-bit numbers this gives a precision of just over 7
decimal digits and allows a number range from around 10−38 to just over 10+38. This can be
something of a limitation because there are many types of calculation, especially in physics and
astronomy, which lead to numbers in excess of 1040. Some computers designed expressly for
scientiÞc work, sometimes called �super-computers�, allocate 64 bits for real numbers so that
the numerical precision is much larger; the range is often larger as well. On such machines it is
rarely necessary to use the double precision type.

5 CONSTANTS, VARIABLES, AND ARRAYS 30

Double Precision Type

Double precision is an alternative ßoating-point type. The Fortran Standard only speciÞes that
it should have greater precision than the real type but in practice, since the double precision
storage unit is twice the size, it is safe to assume that the precision is at least doubled. The
number range may, however, be the same as that for real type.
Although double precision values occupy twice as much memory as real (or integer) values,

computations on them do not necessarily take twice as long.

Complex Type

The complex data type stores two real values as a single entity. There is no double precision
complex type in Standard Fortran.
Complex numbers arise naturally when extracting the roots of negative numbers and are

used in many branches of mathematics, physics, and engineering. A complex number is often
represented as (A + iB), where A and B are the real and imaginary parts respectively and
i2 = −1. Electrical engineers, having used the letter i to represent current, use the notation
(A+ jB) instead.
Although the rules for manipulating complex numbers are straight-forward, it is convenient

to have the Fortran system to do the work. It is usually more efficient as well, because the
computer can use its internal registers to store the intermediate products in complex arithmetic.
Exponentiation and the four regular arithmetic operators can be used on complex values, and
various intrinsic functions are also provided such as square-root, logarithms, and the trigono-
metric functions.

Logical Type

The logical data type is mainly used in conjunction with IF statements which select a course of
action according to whether some condition is true or false. A logical variable (or array element)
may be used to store such a condition value for future use. Logical variables and arrays are also
useful when dealing with two-valued data such as whether a person is male or female, a Þle open
or closed, power on or off, etc.
Some programmers seem reluctant to use logical variables and arrays because they feel that

it must be inefficient to use an entire computer word of perhaps 32 bits to store just one bit of
information. In fact the extra code needed to implement a more efficient data packing scheme
usually wastes more memory than the logical variables would have occupied.

Character Type

The character type is unique in that each character item has a length deÞned for it: this is the
number of characters that it holds. In general the length is Þxed when the item is declared
and cannot be altered during execution. The only exception to this is for dummy arguments of
procedures: here it is possible for the dummy argument to acquire the length of the corresponding
actual argument. Using this facility, general-purpose procedures can be written to operate on
character strings irrespective of their length. In addition, the rules for character assignment take
care of mismatched lengths by truncating or padding with blanks on the right as necessary. This
means that the Fortran character type has many of the properties of a genuine variable-length
character-handling system.
The maximum length of a character item is system-dependent: it is safe to assume that all

systems will allow strings of up to 255 characters, a length limit of 32767 (or even more) is quite

5 CONSTANTS, VARIABLES, AND ARRAYS 31

common. The minimum length of a character item is one character; empty or null strings are
not permitted.

Storage Units

Although the Fortran Standard does not specify the absolute amount of memory to be allocated
to each data type, it does specify the relative amounts. This is not important very often, only
when constructing unformatted direct-access records or when using COMMON and EQUIVALENCE

statements. The rules are as follows:

Data types Storage units

integer, real, logical 1 numerical storage unit
complex, double precision 2 numerical storage units
character*(N) N character storage units

In the case of an array the number of storage units must be multiplied by the total number
of elements in the array.
The relationship between the numeric and character storage units is deliberately undeÞned

because it is entirely system-dependent.

Guidelines

It is usually fairly clear which data type to choose for each item in a program, though there are
some borderline cases among the various arithmetic data types.
When processing data which are inherently integers, such as the number of seeds which

germinate in each plot, or the number of photons detected in each time interval, it is not always
clear whether to use integer or real arrays to store them. They both use the same memory space
but on some machines additions and subtractions are faster on integers than on ßoating-point
numbers. In practice, however, any savings can be swallowed up in the data type conversions
that are usually necessary in subsequent processing. The main snag with integers is the limited
range; on some machines integer overßow is not detected whereas ßoating-point overßows nearly
always produce error messages.
If your machine stores its real variables in 32-bit words then the precision of around 1 in 107

is likely to be inadequate in some applications. This imprecision is equivalent to an error of
several pence in a million pounds, or around ten milliseconds in a day. If errors of this order
are signiÞcant you should consider using the double precision type instead. This will normally
reduce the errors by at least another factor of 107. Mixing data types increases the risks of
making mistakes and it is often simpler and safer to use the double precision type instead of real
throughout the program, even though this may use slightly more memory and processor time.
Although automatic type conversions are provided for the arithmetic types in expressions, in

other cases such as procedure calls it is essential for each actual argument to have the same data
type as the corresponding dummy argument. Since program units are compiled independently,
it is difficult for either the compiler or the linker to detect type mismatches in calls to external
procedures.

Non-standard Data Types

Although Standard Fortran only provides the above six data types, many systems provide ad-
ditional ones. You may come across data type names such as: LOGICAL*1, INTEGER*2, REAL*8,
COMPLEX*16, etc. The number after the asterisk indicates the number of bytes of storage used

5 CONSTANTS, VARIABLES, AND ARRAYS 32

for each datum (a byte being a group of 8 bits). This notation has a certain logic but is to-
tally non-standard. The use of a term like REAL*8 when it is simply a synonym for DOUBLE

PRECISION seems particularly pointless. There are, of course, circumstances when types such as
COMPLEX*16 are necessary but the price to be paid is the loss of portability.

5.2 Constants

A constant has a value which is Þxed when the program is written. The data type of every
constant is evident from its form. Arithmetic constants always use the decimal number base:
Standard Fortran does not support other number bases such as octal or hexadecimal.
Although arithmetic constants may in general have a leading sign (plus or minus) there are

some circumstances in Fortran when an unsigned constant is required. If the constant is zero
then any sign is ignored.

Integer Constants

The general form of an integer constant is a sign (plus or minus) followed by a string of one or
more digits. All other characters (except blanks) are prohibited. If the number is positive the
plus sign is optional. Here are some examples of valid integer constants:

-100 42 0 +1048576

It is easier to read a large number if its digits are marked off in groups of three: traditionally
the comma (or in some countries the dot) is used for this purpose. The blank can be used in
the same way in Fortran programs (but not in data Þles):

-1 000 000 000

Note that this number, although conforming to the rules of Fortran, may be too large in mag-
nitude to be stored as an integer on some systems.

Real Constants

A real constant must contain a decimal point or an exponent (or both) to distinguish it from
one of integer type. The letter �E� is used in Fortran to represent �times 10 to the power of�.
For example, the constant 1.234× 10−5 is written as �1.234E-5�.
The most general form of a real constant is:

sign digits . digits E sign digits
—integer-part— —decimal-part— —exponent—

–basic-real-constant– –exponent-section–

Both signs are optional; a plus sign is assumed if no sign is present. Leading zeros in the
integer-part and in the exponent are ignored. Either the integer part or the decimal part may
be omitted if it is zero but one or the other must be present. If the value of the exponent is zero
the entire exponent section may be omitted provided a decimal point is present in the number.
There is no harm in giving more decimal digits in a real (or double precision) constant than

the computer can make use of: the value will be correctly rounded by the computer and the
extra decimal places ignored.
Here are a few examples of valid real constants:
.5 -10. 1E3 +123.456E4 .000001

Dangling decimal points, though permitted, are easily overlooked, and it is conventional to stan-
dardize constants in exponential notation so that there is only one digit before the decimal point.
Using this convention, these values would look like this:

5 CONSTANTS, VARIABLES, AND ARRAYS 33

0.5 -10.0 1000.0 1.23456E6 1.0E-6

Double Precision Constants

A double precision constant has a similar form to a real constant but it must contain an expo-
nent but using the letter �D� in place of �E� even if the exponent is zero. Some examples of
double precision constants are:

3.14159265358987D0 1.0D-12 -3.652564D+02

Complex Constants

A complex constant has the form of two real or integer constants separated by a comma and
enclosed in a pair of parentheses. The Þrst number is the real component and the second the
imaginary component. Some examples of valid complex constants are:
(3.14,-5.67) (+1E5,0.125) (0,0) (-0.999,2.718E15)

Logical Constants

There are only two possible logical constants, and they are expressed as: .TRUE. and .FALSE.

The dots at each end are needed to distinguish these special forms from the words TRUE and
FALSE, which could be used as symbolic names.

Character Constants

A character constant consists of a string of characters enclosed in a pair of apostrophes which act
as quotation marks. Within the quoted string any characters available in the character set of the
machine are permitted; the blank (or space) character is signiÞcant within character constants
and counts as a single character just like any other. Examples of valid character constants are:

’X’

’ 40 + 15%’

’This is a constant including spaces’

The apostrophe character can be included in a character constant by representing it as two
successive apostrophes (with no intervening blanks). This pair of apostrophes only counts as a
single character for the purposes of computing the length of the string. For example: ’DON’’T’

is a constant of length 5.

5.3 Specifying Data Type

The preceding rules ensure that the data type of an literal constant is completely determined
by its form. Similarly the data type of an expression depends on the operands and operators
involved. The intrinsic functions are also a special case, since their properties, including their
data types, are known to the compiler. All other typed objects in a Fortran program are referred
to by symbolic names. The rules given here apply to all of these named objects: variables, arrays,
named constants, statement functions, and external functions.
In many programming languages, especially those in the Algol family, the data type of almost

every item in the program has to be speciÞed explicitly. Many programmers regard it as a chore

5 CONSTANTS, VARIABLES, AND ARRAYS 34

to have to provide all these type speciÞcations, although their presence does make it rather
easier for the compiler to detect mistakes.
In Fortran you can specify data types explicitly in a similar way by using type statements,

but Fortran also makes life easier by having certain default types. The data type of any object
which has not been declared in a type statement depends on the Þrst letter of its name. The
default rules are:

First letter of the name Implicit type

A to H REAL
I to N INTEGER
O to Z REAL

Most programs make extensive use of integer and real objects, so these default values reduce
the number of type statements that are required, provided suitable initial letters are chosen for
the symbolic names.
The Þrst-letter rule can also be changed throughout a program unit by using an IMPLICIT

statement, described below.

Type Statements

There are six different type statements, one for each data type. In their simplest form they just
consist of the appropriate data-type keyword followed by a list of symbolic names. For example:

INTEGER AGE, GRADE

LOGICAL SUPER

REAL RATE, HOURS, PAY, TAX, INSURE

In this example the Þrst four items declared to be real would have had that type anyway had
the default rules been left to operate. ConÞrmatory type speciÞcation does no harm.
There is no limit to the number of type statements that can be used but a name must not have

its type speciÞed explicitly more than once in a program unit. Type statements must precede all
executable statements in the unit; it is good practice, though not essential, for them to precede
other speciÞcation statements referring to the same name. Type statements can be used in a
subprogram to specify the types of the dummy arguments and, in an external function, the type
of the function as well. Type statements by themselves have no effect on intrinsic function names
but it is not a good idea to use them in this way. The CHARACTER statement is slightly different
from the others because it also speciÞes the length of each character item, i.e. the number of
characters it holds. The length can be given separately for each item, thus:

CHARACTER NAME*15, STREET*30, TOWN*20, PCODE*7

Alternatively, if several items are to have the same length, a default length for the statement
can be given at the beginning:

CHARACTER*20 STAR, GALAXY, COMET*4, PLANET

This declares the name COMET to have a length of 4 characters, whereas STAR, GALAXY, and
PLANET are all 20 characters long. If the length is not speciÞed at all it defaults to one. The length
can also be speciÞed by means of a named integer constant or an integer constant expression
enclosed in parentheses. For example:

PARAMETER (NEXT=15, LAST=80)

CHARACTER TEXT*(NEXT+LAST)

Note that the length of a character item is Þxed at compilation time. The special form:
CHARACTER NAME*(*)

5 CONSTANTS, VARIABLES, AND ARRAYS 35

is permitted in two cases: for named constants the length of the literal constant in the PARAMETER

statement is used (section 5.4); for dummy arguments of procedures the length of the associated
actual argument is used (section 9.5). Type statements can also be used to declare the dimensions
of arrays: this is described in section 5.6.

IMPLICIT Statement

The IMPLICIT statement can be used to change the Þrst-letter default rule throughout a program
unit. For example:

IMPLICIT DOUBLE PRECISION (D,X-Z), INTEGER (N-P)

would mean that all names starting with the letters D,X,Y, or Z would (unless declared otherwise
in type statements) have the type double precision. Similarly the letters I through P, instead of
just I through N, will imply integer type. The other letters (A-C,E-H, and Q-W) will still imply
real type.

IMPLICIT can be used with character type to specify a default length as well, for example:
IMPLICIT CHARACTER*100 (C,Z), CHARACTER*4 (S)

But this is not usually of much practical value. As with type statements, the default character
length is one.
More than one IMPLICIT statement can be used in a program unit but the same letter must

not have its implied type speciÞed more than once. The usual Fortran implied-type rules apply
to all initial letters not listed in any IMPLICIT statements. The list of letters given after each type
must appear in alphabetical order. IMPLICIT statements normally precede all other speciÞcation
statements in a program. There is one exception to this: PARAMETER statements may precede
them provided that the constants named in them are not affected by the IMPLICIT statement.
Note that dummy arguments and function names may be affected by a subsequent IMPLICIT

statement. IMPLICIT statements have no effect on intrinsic function names.

Guidelines

There are two diametrically opposed schools of thought on type speciÞcation. The Þrst holds
that all names should have their types speciÞed explicitly. This certainly helps programmers to
avoid mistakes, because they have to think more carefully about each item. It also helps the
compiler to diagnose errors more easily, especially if the it knows that all names are going to be
declared in advance. Some Fortran compilers allow a statement of the form �IMPLICIT NONE�
which makes all names typeless by default and so requiring every name to be explicitly typed.
Others have a compile-time switch with the same effect. If yours does not you may be able to
produce a similar effect by using something like:

IMPLICIT CHARACTER*1000000 (A-Z)

near the beginning of each program unit which is likely to cause an error for anything not
explicitly typed. One disadvantage of the practice of declaring all names in advance is that the
program may become so cluttered with speciÞcation statements that it may obscure its structure
and algorithm.
The alternative way of working is to make maximum use of implicit types to reduce the

number of statements. This means, of course, that the Þrst letter of each name has to be chosen
to suit the type, leaving no more than Þve to be chosen freely: this makes it harder than ever
to devise meaningful symbolic names. As a result, Fortran programs often include names like
RIMAGE or ISIZE or KOUNT. Clearly type statements are still needed for character type because
it is usually necessary to use items of a number of different lengths.
Experience suggests that either system can be satisfactory provided it is used consistently.

5 CONSTANTS, VARIABLES, AND ARRAYS 36

However the wholesale reassignment of initial letters with IMPLICIT statements usually increases
the chance of making a mistake. IMPLICIT, if used at all, should only reassign one or two rarely-
used letters to the less common data types, for example:

IMPLICIT DOUBLE PRECISION (Z), LOGICAL (Q),

COMPLEX (X)

It is also prudent to use an identical IMPLICIT statement in each program unit, otherwise type
mismatches are more likely to be made in procedure calls.

5.4 Named Constants

The PARAMETER statement can be used to give a symbolic name to any constant. This can be
useful in several rather different circumstances.
With constants of nature (such as π) and physical conversion factors (like the number of

pounds in a kilogram) it can save typing effort and reduce the risk of error if the actual number
is only given once in the program and the name used everywhere else:

REAL PI, TWOPI, HALFPI, RTOD

PARAMETER (PI = 3.14159265, TWOPI = 2.0 * PI)

PARAMETER (HALFPI = PI / 2.0, RTOD = 180.0 / PI)

The names PI, TWOPI, etc. can then be used in place of the literal constants elsewhere in the
program unit. It is much better to use named constants than variables in such cases as they
are given better protection against inadvertent corruption: constants are often protected by
hardware. The use of symbolic names rather than numbers can also make the program a little
more readable: it is probably harder to work out the signiÞcance of a number like 1.570796325
than to deduce the meaning of HALFPI.
Another important application of named constants is for items which are not permanent

constants but parameters of a program, i.e. items Þxed for the present but subject to alteration
at some later date. Named constants are often used to specify array bounds, character-string
lengths, and so on. For example:

INTEGER MAXR, MAXC, NPTS

PARAMETER (MAXR = 100, MAXC = 500, NPTS = MAXR*MAXC)

REAL MATRIX(MAXR,MAXC), COLUMN(MAXR), ROW(MAXC)

The constants such as MAXR and MAXC can also be used in the executable part of the program,
for instance to check that the array subscripts are in range:

IF(NCOL .GT. MAXC .OR. NROW .GT. MAXR) THEN

STOP ’Matrix is too small’

ELSE

MATRIX(NROW,NCOL) = ROW(NCOL)

END IF

If, at some point, the matrix turns out to be too small for your needs then you only have to alter
this one PARAMETER statement: everything else will change automatically when the program is
recompiled.
The rules for character assignment apply to PARAMETER statements: see section 7.4. In

addition a special length speciÞcation of *(*) is permitted which means that the length of
item is set to that of the literal constant. The type speciÞcation must precede the PARAMETER

statement.

5 CONSTANTS, VARIABLES, AND ARRAYS 37

CHARACTER*(*) LETTER, DIGIT, ALPNUM

PARAMETER (LETTER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

$ DIGIT = ’0123456789’, ALPNUM = LETTER // DIGIT)

CHARACTER WARN*(*)

PARAMETER (WARN = ’This matrix is nearly singular’)

The constant ALPNUM will be 36 characters long and contain all the alpha-numeric characters
(letters and digits).
Named logical constants also exist, but useful applications for them are somewhat harder to

Þnd:

PARAMETER (NX = 100, NY = 200, NZ = 300, NTOT = NX*NY*NZ)

LOGICAL LARGE

PARAMETER (LARGE = (NTOT .GT. 1000000) .OR. (NZ .GT. 1000))

PARAMETER Statement

The general form of the PARAMETER statement is:
PARAMETER (cname = cexp, cname = cexp, ...)

where each cname is a symbolic name which becomes the name of a constant, and each cexp is
a constant expression of a suitable data type.
The terms in a constant expression can only be literal constants or named constants deÞned

earlier in the same program unit. Variables, array elements, and function references are not
permitted at all. Otherwise the usual rules for expressions apply: parentheses can be used
around sub-expressions, and the arithmetic types can be intermixed. There is one restriction
on exponentiation: it can only be used to raise a number to an integer power. The normal
rules for assignment statements apply: for arithmetic types suitable conversions will be applied
if necessary; character strings will be truncated or padded to the required length. Note that
substring references are not permitted in character constant expressions.

PARAMETER statements are speciÞcation statements and may precede or follow type state-
ments. But any type (or IMPLICIT) statement which affects the data type or length of a named
constant must precede it. Subject to these rules, PARAMETER statements are permitted to precede
IMPLICIT statements. This makes it possible for a named constant to set the default length for
the character type for certain ranges of initial letters. For example:

PROGRAM CLEVER

PARAMETER (LENCD = 40, LENE = 2 * LENCD)

IMPLICIT CHARACTER*(LENCD)(C-D), CHARACTER*(LENE)(E)

PARAMETER (DEMO = ’This is exactly 40 chars long’)

Once deÞned, a named constant can be used in any expression, including a dimension-bound
expression, or in a DATA statement. A named constant cannot be used just as part of another
constant (for example one component of a complex constant) and named constants are not
permitted at all within format speciÞcations.

Guidelines

One of the limitations of Standard Fortran at present is that there is no way of allocating
memory dynamically. One of the best ways around this is to use named constants to specify
array bounds; this makes it much easier to alter programs to suit new requirements.

5 CONSTANTS, VARIABLES, AND ARRAYS 38

Names should also be given to all mathematical and physical constants that your programs
require. If the same constants are needed in several program units then it may be sensible to
compose a suitable set of PARAMETER statements for all of them and bring them in where ever
necessary using INCLUDE statements.
If you deÞne double precision constants in a PARAMETER statement do not forget that each

literal constant value must include an exponent using the letter D.
There are no constant arrays in Fortran: the only way to overcome this limitation is to

declare an ordinary array in a type statement and initialise its elements with a DATA statement
(described in section 11).

5.5 Variables

A variable is simply a named memory location with a Þxed data type. As explained earlier,
variables do not have to be declared in advance if the data type implied by the Þrst letter of the
name is appropriate. Otherwise a type statement is required.
At the start of execution the value of each variable is undeÞned unless a suitable DATA

statement appears in the program unit (see section 11). UndeÞned values must not be used
in expressions. Local variables in procedures do not necessarily retain their values from one
invocation of the procedure to another unless a suitable SAVE statement is provided (section
9.11).

5.6 Arrays

An array is a group of memory locations given a single name. The elements of the array all have
the same data type.
In mathematics the elements of an array a would be denoted by a1, a2, a3, and so on. In

Fortran a particular array element is identiÞed by providing a subscript expression in parentheses
after the array name: A(1), A(2), A(3), etc. Subscripts must have integer type but they may
be speciÞed by expressions of arbitrary complexity, including function calls.
An array element can be used in the same way as a variable in almost all executable state-

ments. Array elements are most often used within loops: typically an integer loop counter selects
each element of the array in turn.

*Add array OLD to array NEW making array TOTAL

PARAMETER (NDATA = 1024)

REAL OLD(NDATA), NEW(NDATA), TOTAL(NDATA)

*......

DO 100, I = 1,NDATA

TOTAL(I) = OLD(I) + NEW(I)

100 CONTINUE

Declaring Arrays

Arrays can have up to seven dimensions; the lower bound of each dimension is one unless declared
otherwise. There is no limit on the upper bound provided it is not less than the lower bound.
Arrays which are dummy arguments of a procedure may have their dimension bounds speciÞed
by integer variables which are arguments of the procedure; in all other cases each dimension
bound must be an integer constant expression. This Þxes the size of the array at compile-
time. Type, DIMENSION, and COMMON statements may all be used to declare arrays, but COMMON

5 CONSTANTS, VARIABLES, AND ARRAYS 39

statements have a specialised use (described in section 12). The DIMENSION statement has a
similar form to a type statement but only declares the bounds of an array without determining
its data type. It is usually simpler and neater to use a type statement which speciÞes both at
once:

CHARACTER COLUMN(5)*25, TITLE*80

Note that when declaring character arrays the string length follows the list of array bounds.
The character array COLUMN has 5 elements each of which is 25 characters long; TITLE is,
of course, just a variable 80 characters long. Although a default string length can be set for an
entire type statement, it is not possible to set a default array size in a similar way.
It is generally good practice to use named constants to specify array bounds as this facilitates

later modiÞcations:

PARAMETER (MAXIM = 15)

INTEGER POINTS(MAXIM)

COMPLEX SERIES(2**MAXIM)

These arrays all have a lower bound of one. A different lower bound can be speciÞed for any
dimension as shown below. The lower and upper bounds are separated by a colon:

REAL TAX(1985:1990), PAY(12,1985:1990)

LOGICAL TRIPLE(-1:1, -1:1, -1:1, -1:1)

TAX has 6 elements from TAX(1985) to TAX(1990).
PAY has 72 elements from PAY(1,1985) to PAY(12,1990).
TRIPLE has 81 elements from BIN(-1,-1.-1.-1) to BIN(1,1,1,1).

Although Fortran itself sets no limits to the sizes of arrays that can be deÞned, the Þnite
capacity of the hardware is likely to do so. In virtual memory operating systems it is possible
to use arrays larger than physical memory: those parts of the array not in active use are held
on backing store such as a disc Þle.

Using Arrays

An array element reference must always use the same number of subscripts as the number of
dimensions declared for the array. Each subscript can be an integer expression of any complexity,
but there are restrictions on functions with side effects (see section 9.3).
An array element reference is only valid if all of the subscript expressions are deÞned and if

each one is in the range declared for it. An array element can only be used in an expression if
a value for it has been deÞned. A DATA statement (section 12) can be used to deÞne an initial
value for an entire array or any set of elements.
An array can be used without subscripts:

� in a speciÞcation statement such as a type, DIMENSION, or SAVE statement;

� in a function reference or CALL statement: this transfers the whole of the array to the
associated dummy argument (which must have a compatible array declaration);

� in the data transfer list of a READ or WRITE statement: this causes the whole array to be
input or output. This is not permitted for an assumed size dummy argument array.

� as a unit identiÞer in a READ or WRITE statement: a character array is then an internal Þle
with one record per element.

6 ARITHMETIC 40

� as a format identiÞer in a READ or WRITE statement: the format speciÞcation is contained
in the character array with its elements taken in sequence.

Storage Sequence

Arrays are always stored in a contiguous set of memory locations. In the case of multi-
dimensional arrays, the order of the elements is that the Þrst subscript varies most rapidly,
then the second subscript, and so on. For example in the following 2-dimensional array (for
simplicity one of only six elements):

X(2, 3) =

"
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

#
(1)

The elements are stored in the following sequence:
X(1,1), X(2,1), X(1,2), X(2,2), X(1,3), X(2,3)

i.e. the sequence moves down each column Þrst, then across to the next row. This column order
is different from that used in some other programming languages.
The storage order may be important if you use large multi-dimensional arrays and wish to

carry out some operation on all the elements of the array. It is then likely to be faster to access
the array in storage order, i.e. by columns rather than rows. This means arranging loop indices
with the last subscript indexed by the outer loop, and so on inwards. For example:

DOUBLE PRECISION ARRAY(100,100), SUM

SUM = 0.0D0

DO 250,L = 1,100

DO 150,K = 1,100

SUM = SUM + ARRAY(K,L)

150 CONTINUE

250 CONTINUE

With the loops arranged this way around the memory locations are overhead in subscript cal-
culations.

6 Arithmetic

Fortran has good facilities for processing numbers. Arithmetic expressions and assignment
statements can include integer, real, double precision, or complex items. Data type conversions
are provided automatically when necessary; type conversions can also be performed explicitly
using intrinsic functions. Other intrinsic functions are available for trigonometry, logarithms,
and other useful operations.
For example, the well-known cosine formula for the third side of a triangle, given the other

two sides and the angle between them is:q
b2 + c2 − 2.b.c.cos(A)

Translated into a Fortran expression it looks like this:
SQRT(B**2 + C**2 - 2.0 * B * C * COS(ANGLEA))

which makes use of the intrinsic functions SQRT and COS. Although SQRT(X) produces the same
result as X**0.5, the square-root function is simpler, faster, and probably more accurate than

6 ARITHMETIC 41

raising to the power of one half, which would actually be carried out using both the EXP and
LOG functions.
Assignment statements evaluate an expression and assign its value to a variable (or array

element). Unlike almost all other Fortran statements, they do not start with a keyword. For
example:

A = SQRT(B**2 + C**2 - 2.0 * B * C * COS(ANGLEA))

TOTAL(N/2+1) = 0.0

FLUX = FLUX + 1.0

6.1 Arithmetic Expressions

An expression in its simplest form is just a single operand, such as a constant or variable. More
complicated expressions combine various operands with operators, which specify the computa-
tions to be performed. For example:

RATE * HOURS + BONUS

The rules of Fortran have been designed to resemble those of mathematics as far as possible,
especially in determining the order in which the expression is evaluated. In this example the
multiplication would always be carried out before the addition, not because if comes Þrst, but
because it has a higher precedence. When in doubt, or to over-ride the precedence rules, paren-
theses can be used:

(ROOM + DINNER) * 1.15

Sub-expressions enclosed in parentheses are always evaluated Þrst; they can be nested to any
reasonable depth. If in doubt, there is no harm in adding parentheses to determine the order of
evaluation or to make a complicated expression easier to understand.
Arithmetic expressions can contain any of the Þve arithmetical operators + - * / ** .

The double asterisk represents exponentiation, i.e. raising a number to a power. Thus the
mathematical expression:

(1 +RATE/100)years

could be represented in Fortran as:
(1.0 + RATE/100.0)**YEARS

(note the explicit decimal points in the constants to make them real values).
Arithmetic expressions can involve operands of different data types: the data type of the

result is determined by some simple rules explained below.

General Rules

Arithmetic expressions can contain arithmetic operands, arithmetic operators, and parentheses.
There must always be at least one operand. The operands can belong to any of the four arith-
metic data types (integer, real, double precision, or complex); the result also has an arithmetic
data type. Operands can be any of the following:

� unsigned literal constants
� named constants
� variables
� array elements

6 ARITHMETIC 42

� function references
� complete expressions enclosed in parentheses.

The rules for forming more complicated arithmetic expressions are as follows. An arithmetic
expression can have any of the following forms:

operand
+operand
-operand
arithmetic-expression arith-op operand

where the arith-op can be any of these operators:

+ addition
- subtraction
* multiplication
/ division
** exponentiation

The effect of these rules is that an expression consists of a string of operands separated by
operators and, optionally, a plus or minus at the start. A leading plus sign has no effect; a
leading minus sign negates the value of the expression.
All literal arithmetical constants used in expressions must be unsigned: this is to prevent the

use of two consecutive operators which is confusing and possibly ambiguous:
4 / -3.0**-1 (illegal).

The way around this is to use parentheses, for example:
4 / (-3.0)**(-1)

which makes the order of evaluation explicit.
The order of evaluation of an expression is:

1. sub-expressions in parentheses

2. function references

3. exponentiation, i.e. raising to a power

4. multiplication and division

5. addition, subtraction, or negation.

Within each of these groups evaluation proceeds from left to right, except that exponentia-
tions are evaluated from right to left. Thus: A / B / C is equivalent to (A / B) / C whereas
X ** Y ** Z is equivalent to X ** (Y ** Z).
An expression does not have to be evaluated fully if its value can be determined otherwise:

for example the result of:
X * FUNC(G)

can be determined without calling the function FUNC if X happens to be zero. This will not
cause problems if you only use functions that have no side effects.

6 ARITHMETIC 43

Data Type Conversions

If an operator has two operands of the same data type then the result has the same type. If the
operands have different data types then an implicit type conversion is applied to one of them to
bring it to the type of the other. These conversions always go in the direction which minimises
loss of information:

integer =⇒ real =⇒ complex or double precision
Since there is no way of converting a complex number to double precision type, or vice-

versa, without losing signiÞcant information, both these conversions are prohibited: an operator
cannot have one complex operand and one of double precision type. All other combinations are
permitted. These implicit type conversions have the same result as if the appropriate intrinsic
function (REAL, DBLE, or CMPLX) had been used. These are described in detail below. Note
that the data type of any operation just depends on the two operands involved; the rest of the
expression has no inßuence on it whatever.
Exponentiation is an exception to the type conversion rule: when the exponent is an integer

it does not have to be converted to the type of the other operand and the result is evaluated
as if by repeated multiplication. But if the exponent has any other data type the calculation is
performed by implicit use of the LOG and EXP functions, thus:

2.0**3 =⇒ 2.0 * 2.0 * 2.0 =⇒ 8.0
2.0**3.0 =⇒ EXP(3.0 * LOG(2.0)) =⇒ 8.0

The Þrst result will, of course, be computed more rapidly and accurately than the second.
If the exponent has a negative value the result is simply the reciprocal of the corresponding
positive power, thus:

2.0**(-3) =⇒ 1.0/2.0**3 =⇒ 1.0/8.0 =⇒ 0.125
Note that conversion from real to double precision cannot produce any information not present

originally. Thus with a real variable R and a double precision variable D:

R = 1.0 / 3.0

D = R

D may end up with a value such as 0.3333333432674408... which is no closer to the value of one
third than R was originally.

Integer Division

Integer division always produces a result which is another integer value: any fractional part is
truncated, i.e. rounded towards zero. This makes it especially important to provide a decimal
point at the end of a real constant even if the fractional part is zero. For example:

8 / 3 =⇒ 2 -8 / 3 =⇒ -2 2**(-3) =⇒ 1/(2**3) =⇒ 1/8 =⇒ 0
The combination of the two preceding rules may have unexpected effects, for example:

(-2)**3 =⇒ -2 * -2 * -2 =⇒ -8
whereas (-2)**3.0 is an invalid expression as the computer would try to evaluate the logarithm
of -2.0, which does not exist. Similarly, the expression:

3 / 4 * 5.0 =⇒ REAL(3/4) * 5.0 =⇒ 0.0
whereas

5.0 * 3 / 4 =⇒ 15.0 / REAL(4) =⇒ 3.75

Restrictions

Certain arithmetical operations are prohibited because their results are not mathematically
deÞned. For example dividing by zero, raising a negative value to a real power, and raising zero

6 ARITHMETIC 44

to a negative power. The Fortran Standard does not specify exactly what is to happen if one of
these errors occurs: most systems issue an error message and abort the program.
Errors can also occur because numbers are stored on a computer with Þnite range and preci-

sion. The results of adding or multiplying two very large numbers may be outside the number
range: this is called overßow. A similar effect on very large negative integers is called under-
ßow. Most systems will issue a warning message for overßow or underßow, and may abort the
program, but some processors cannot detect errors of this sort involving integer arithmetic.
Every operand (variable, array element, or function reference) used in an expression must

have a deÞned value at the time the expression is evaluated. Note that variables and arrays
are initially undeÞned unless a suitable DATA statement is used. Expressions must not include
references to any external functions with side effects on other operands of the expression: see
section 9.3 for more details.

Arithmetic Constant Expressions

Arithmetic constant expressions can be used in PARAMETER statements and to specify implied-
DO parameters in DATA statements. All the operands in a constant expression must be literal
constants or previously deÞned named constants. Variables, array elements, and function ref-
erences are all prohibited. Exponentiation is only allowed if the number is raised to an integer
power.
The same rules apply to integer constant expressions but in addition the operands must all

be integer constants: such expressions can be used to specify array bounds in type, COMMON,

and DIMENSION statements, and to specify string lengths in CHARACTER statements.

Bit-wise Logical Operations on Integers

When Fortran programs communicate directly with digital hardware it may be necessary to carry
out bit-wise logical operations on bit-patterns. Standard Fortran does not provide any direct
way of doing this, since logical variables essentially only store one bit of information and integer
variables can only be used for arithmetic. Many systems provide, as an extension, intrinsic
functions to perform bit-wise operations on integers. The function names vary: typically they
are IAND, IOR, ISHIFT. A few systems provide allow the normal logical operators such as .AND.

and .OR. to be used with integer arguments: this is a much more radical extension and much less
satisfactory, not only because it reduces portability, but also reduces the ability of the compiler
to detect errors in normal arithmetic expressions.
Many systems also provide format descriptors to transfer integers using octal and hexadecimal

number bases: these are also non-standard.

Guidelines

Expressions with mixed data types should be examined carefully to ensure that the type-
conversion rules have the desired effect. It does no harm to use the type conversion functions
explicitly and it may make the working clearer.
Particular care is needed with the data types of literal constants. It is bad practice to use

an integer constant where you really need a real constant. Although this will work in most
expressions it is a serious mistake to use the wrong form of constant in the argument list of a
procedure.
Long and complicated expressions which spread over several lines can be rather trying to

read offer more scope for programming errors. Sometimes it is better to split the computation

6 ARITHMETIC 45

into several shorter equations at the expense of one or two temporary variables.
It is often tempting to try to write programs that are as efficient as possible. With modern

compilers there is little point in trying to rearrange expressions to optimise speed. One of the
few exceptions is that if an intrinsic function is provided it is always best to use it; thus SQRT(X)

is likely to be faster and more accurate than X**0.5.
You may Þnd that your system actually sets the whole of memory to zero initially, except for

items deÞned with DATA statements, but it is very bad programming practice to rely on this.

6.2 Arithmetic Intrinsic Functions

Intrinsic functions are supplied automatically by the system and can be used in expressions in
any program unit. A description of their special properties appears in section 9.1.
Many of the arithmetic intrinsic functions have generic names: that is they can be used with

several different types of arguments. The SQRT function, for example, can be used with a real,
double precision, or complex argument. The Fortran system automatically selects the correct
speciÞc function for the job: SQRT, DSQRT, or CSQRT. These speciÞc names can be ignored
in almost all circumstances, and are listed only in the appendix. In most cases the data type of
the function is the same as that of its argument but there are a few obvious exceptions such as
the type conversion functions.
In the descriptions below, the number and data type of the arguments of each intrinsic

function are indicated by a letter: I = integer, R = real, D = double precision, X = complex.
An asterisk on the left indicates that the result has the same data type as the arguments.

Note that if multiple arguments are permitted they must all have the same data type. Thus I =
NINT(RD) indicates that the NINT function can take a single real or double precision argument
but its result is always integer, whereas * = ANINT(RD) indicates that the result has the same
type (real or double precision) as the argument.

Trignometric Functions

The functions in this group can all be used on real or double precision arguments, and SIN and
COS can also be used on complex numbers. In every case the result has the same data type as
the argument.

* = SIN(RDX) sine of the angle in radians.
* = COS(RDX) cosine of the angle in radians.
* = TAN(RD) tangent of the angle in radians.
* = ASIN(RD) arc-sine; the result is in the range −π/2 to +π/2.
* = ACOS(RD) arc-cosine; the result is in the range 0 to +π .
* = ATAN(RD) arc-tangent; the result is in the range −π/2 to +π/2.
* = ATAN2(RD,RD) arc-tangent of arg1/arg2; the result is in the range −π to +π.

Both arguments must not be zero.
* = SINH(RD) hyperbolic sine.
* = COSH(RD) hyperbolic cosine.
* = TANH(RD) hyperbolic tangent.
Note that the arguments of SIN, COS, and TAN must be angles measured in radians (not

degrees). They can be used on angles of any size, positive or negative, but if the magnitude
is very large the accuracy of the result will be reduced. Similarly all the inverse trigonometric
functions deliver a result in radians; the argument of ASIN and ACOS must be in the range -1
to +1. The ATAN2 function can be useful in resolving a result into the correct quadrant of the
circle, thus:

6 ARITHMETIC 46

ATAN(0.5) = 0.4636476

ATAN2(2.0,4.0) = 0.4636476

ATAN2(-2.0,-4.0) = -2.677945 (= 0.4636476 - π).

Other Transcendental Functions

* = SQRT(RDX) square root.
* = LOG(RDX) natural logarithm, i.e. log to base e (where e = 2.718281828...).
* = EXP(RDX) returns the exponential, i.e. e to the power of the argument. This

is the inverse of the natural logarithm.
* = LOG10(RD) logarithm to base 10.
Note that LOG10, which may be useful to compute decibel ratios etc., is the only one of this

group which cannot be used on a complex argument.

Type Conversion Functions

These functions can be used to convert from any of the four arithmetic data types to any of the
others. They are used automatically whenever mixed data types are encountered in arithmetic
expressions and assignments.

I = INT(IRDX) converts to integer by truncation.
R = REAL(IRDX) converts to real.
D = DBLE(IRDX) converts to double precision.
X = CMPLX(IRDX) converts to complex.
X = CMPLX(IRD,IRD) converts to complex.
The integer conversion of INT rounds towards zero; if you need to round to the nearest integer

use the NINT function (described below). The CMPLX function produces a value with a zero
imaginary component unless it is used with two arguments (or one which is already complex). It
is important to realise that many conversions lose information: in particular a double precision
value is likely to lose signiÞcant digits if converted to any other data type.

Minimum and Maximum

The MIN and MAX functions are unique in being able to take any number of arguments from
two upwards; the result has the same data type as the arguments.

* = MIN(IRD,IRD,...) returns the smallest of its arguments.
* = MAX(IRD,IRD,...) returns the largest of its arguments.
These two functions can, of course, be combined to limit a value to a certain range. For

example, to limit a value TEMPER to the range 32 to 212 you can use an expression such as:
MAX(32.0, MIN(TEMPER, 212.0))

Note that the minimum of the range is an argument of the MAX function and vice-versa.
To Þnd the largest (or smallest) element of a large array it is necessary use a loop.

*Find largest value in array T of N elements:

TOP = T(1)

DO 25,I = 2,N

TOP = MAX(T(I), TOP)

25 CONTINUE

*TOP now contains the largest element of T.

6 ARITHMETIC 47

Other Functions

* = AINT(RD) Truncates the fractional part (i.e. as INT) but preserves the data
type.

* = ANINT(RD) Rounds to the nearest whole number.
I = NINT(RD) Converts to integer by rounding to the nearest whole number.
* = ABS(IRD) Returns the absolute value of a number (i.e. it changes the sign if

negative).
R = ABS(X) Computes the modulus of a complex number (i.e. the square-root

of the sum of the squares of the two components).
* = MOD(IRD,IRD) returns A1 modulo A2, i.e. the remainder after dividing A1 by

A2.
* = SIGN(IRD,IRD) performs sign transfer: if A2 is negative the result is -A1, if A2 is

zero or positive the result is A1.
* = DIM(IRD,IRD) returns the positive difference of A1 and A2, i.e. if A1 > A2 it

returns (A1-A2), otherwise zero.
D = DPROD(R,R) Computes the double precision product of two real values.
R = AIMAG(X) Extracts the imaginary component of a complex number. Note

that the real component can be obtained by using the REAL
function.

X = CONJG(X) Computes the complex conjugate of a complex number.
The NINT and ANINT functions round upwards if the fractional part of the argument is 0.5

or more, whereas INT and AINT always round towards zero. Thus:
INT(+3.5) = 3 NINT(+3.5) = 4

INT(-3.5) = -3 NINT(-3.5) = -4

The fractional part of a ßoating point number, X, can easily be found either by:
X - AINT(X)

or
MOD(X, 1.0)

In either case, if X is negative the result will also be negative. The ABS function can always be
used to alter the sign if required.
The MOD function has other uses. For example it can Þnd the day of the week from an

absolute day count such as ModiÞed Julian Date (MJD):
MOD(MJD,7)

has a value between 0 and 6 for days from Wednesday to Tuesday. Similarly if you use the
ATAN2 function but want the result to lie in the range 0 to 2π (rather than −π to +2π) then,
assuming the value of TWOPI is suitably deÞned, the required expression is:

MOD(ATAN2(X,Y) + TWOPI, TWOPI)

6.3 Arithmetic Assignment Statements

An arithmetic assignment statement has the form:
arithmetic-var = arithmetic-expression

where arithmetic-var can be an arithmetic variable or array element. For example, the following
assignment statement is valid provided that N, K, and ANGLE are all deÞned values:

IMAGE(N/2+1,3*K-1) = SIN(ANGLE)**2 + 1.0

If the object on the left has a different data type from that of the expression on the right then
a data type conversion is applied automatically. The type conversion function (INT, REAL,

7 CHARACTER HANDLING AND LOGIC 48

DBLE, or CMPLX) is selected to match the object on the left. Note that many type con-
versions lose information. If the object on the left is an array element, its subscripts can be
arbitrary integer expressions, but all the operands in these expressions must be deÞned before
the statement is executed and each must be in the range declared for the corresponding subscript
of the array.
Remember with an integer item on the left and an expression of one of the ßoating-point

types, the INT function is invoked: if the NINT function is really needed then it must be used
explicitly to convert the value of the expression.

7 Character Handling and Logic

This section describes the facilities for handling non-numerical data in Fortran. Character data
are actually present in almost all programs, if only in the form of Þle names and error messages,
but the facilities for character manipulation are now quite powerful. The logical data type is
even more indispensable since a logical expression is used in every IF statement.

7.1 Character Facilities

The character data type differs from all the others in one important respect: every character
item has a Þxed length. This speciÞes the number of characters it holds.
The length of a literal character constant is just the number of characters between the en-

closing apostrophes (except that two consecutive apostrophe within the string count as one).
Thus:

’it’’s’

is a character constant of length four. Because the length of every character variable, array, and
function has to be speciÞed in advance it is nearly always necessary to use CHARACTER statements
to declare them, for example:

CHARACTER NAME*20, ADDRSS(3)*40, ZIP*7

The same applies to named character constants but for these a special notation sets the length
to that of the attached constant, which saves the trouble of counting characters:

CHARACTER TITLE*(*)

PARAMETER (TITLE = ’Latest mailing list’)

The Þxed length of character objects makes it easy to output data in a Þxed format as when
printing a table with neatly aligned columns, but sometimes it would be more convenient to have
a variable length string type as some other languages do. The rules for character assignment go
some way towards this: if an expression is too short then blanks are appended to it; if it is too
long then characters are removed from the right-hand end. For many purposes, therefore, it is
only necessary to ensure that character variables are at least as long as the longest string you
need to store in them.
When transferring character information to procedures the length of the dummy argument

can be set automatically to that of the corresponding actual argument. With this passed length
notation it is easy to write general-purpose character handling procedures. This is described
further in section 9.5.
The most common operations carried out on character strings are splitting them up and

joining them together. Any section of a character variable or array element can be extracted
by using the substring notation. Strings (and substrings) can be joined end to end by using the
concatenation operator in a character expression. These are described in the next two sections.

7 CHARACTER HANDLING AND LOGIC 49

Another fairly common requirement is to search for a particular sequence of characters within
a longer string: this can be done with the intrinsic function INDEX.
Other intrinsic functions ICHAR and CHAR are provided to convert a single character to an

integer or vice-versa according to its position within the native character set. More complicated
conversions from a numerical data type to character form and vice-versa are best carried out us-
ing the internal Þle READ and WRITE statements which allow the power of the format speciÞcation
to applied to the task. This mechanism is described in section 10.3.
Character strings can be compared to each other using relational operators or intrinsic func-

tions. The latter use the ASCII collating sequence irrespective of the native character code.
Further details are given in section 7.6.

7.2 Character Substrings

The substring notation can be used to select any contiguous section of any character variable
or array element. The characters in any string are numbered starting from one on the left: the
lower bound cannot be altered as it can in arrays. A substring is selected simply by giving the
Þrst and last character positions of the extract. For example, with:

CHARACTER METAL*10

METAL = ’CADMIUM’

then METAL(1:3) has the value ’CAD’ while METAL(8:8) has the value blank because the value
is padded out with blanks to its declared length.
Substrings must be at least one character long. They can be used in general in the same

ways as character variables. Continuing with the last example, the assignment statement:
METAL(3:4) = ’ES’

will change the value of METAL to ’CAESIUM ’ (with three blanks at the end, since the total
length stays at 10).

Substring Rules

The parentheses denoting a substring must contain a colon: there may be an integer expression
on either side of the colon. The Þrst expression denotes the initial character position, the second
one the last character position. Both values must be within the range 1 to LEN, where LEN is
the length of the parent string, and the length of the resulting substring must not be less than
one.
Although the colon must always be present, the two integer expressions are optional. The

default value for the Þrst one is one, the default for the second is the position of the last character
of the parent string. Thus, staying with the last example: METAL(:2) has the value ’CA’ while
METAL(7:) has the value ’M’ with three blanks.
With array elements the substring expression follows the sub-script expression, for example:

CHARACTER PLAY(30)*80

PLAY(10) = ’AS YOU LIKE IT’

Then the substring PLAY(10)(4:11) has the value ’YOU LIKE’. Substrings can be used in ex-
pressions anywhere except in the deÞnition of a statement function; they can also be used on
the left-hand side of an assignment statement, and can be also be deÞned by input/output
statements.

7 CHARACTER HANDLING AND LOGIC 50

7.3 Character Expressions

The character operator // is used to concatenate, or join, two character strings. It is, in fact,
the only character operator that Fortran provides. Thus:

’CUP’ // ’BOARD’ =⇒ ’CUPBOARD’

The length of the result is just the sum of the lengths of the operands. Parentheses may be
used in character expressions but make no difference to the result. Note that any embedded or
trailing blanks (spaces) will be reproduced exactly in the resulting string.
The general form of a character-expression is thus:

character-operand
or character-expression // character-operand
where character-operand can be any of the following:

� character constant (literal or named),
� character variable,
� character array element,
� character substring,
� character function reference.
There is one special restriction on character concatenation in procedures: a passed-length

dummy argument can only be an operand of the concatenation operator in an assignment state-
ment. This seemingly arbitrary rule allows the compiler to determine how much work-space is
required.

7.4 Character Assignment Statements

The character assignment statement has the general form:
char-var = character-expression

where char-var can be a character variable, array element, or substring.
There is one important restriction on character assignment statements: none of the characters

being referenced in the expression on the right may be deÞned in char-var on the left, that is to
say there can be no overlap. Thus the assignment statement:

STRING(1:N) = STRING(10:)

is valid only as long as N is no higher than 9. It is, of course, easy to get around this restriction
by using a temporary character variable with a suitable length.
Note when a value is assigned to a substring (as in the last example) the other characters in

the parent string are not affected at all. If the string was previously undeÞned then the other
character positions will still be undeÞned; otherwise they will retain their previous contents.
The expression and the character object to which its value is assigned may have different

lengths: if the expression is longer then the excess characters on the right are lost; if it is shorter
then blanks are appended. Care is needed to declare adequate lengths or else the results can be
unexpected:

CHARACTER AUTHOR*30, SHORT*5, EXPAND*10

AUTHOR = ’SHAKESPEARE, WILLIAM’

SHORT = AUTHOR

EXPAND = SHORT

The resulting value of EXPAND will be ’SHAKE ’ where the last Þve characters are blanks.

7 CHARACTER HANDLING AND LOGIC 51

7.5 Character Intrinsic Functions

The four main character intrinsic functions are described in this section. There another four
functions provided to compare character strings with each other using the ASCII collating se-
quence: these are described in section 7.6.

CHAR and ICHAR

These two functions perform integer to character conversion and vice-versa using the internal
code of the machine. Although most computers now use the ASCII character code, it is by no
means universal, so these functions can only be used in a very limited way in portable software.

CHAR(I) returns the character at position I in the code table. For example, on a machine
using ASCII code, CHAR(74) = ’J’, since �J� is the character number 74 in the ASCII code
table.

ICHAR(STRING) returns the integer position in the code table of the Þrst character of the
argument STRING. For example, on a machine using ASCII code,

ICHAR(’JOHN’) =⇒ 74
ICHAR(’john’) =⇒ 106

INDEX

INDEX is a search function; it takes two character arguments and returns an integer result.
INDEX(S1, S2) searches for the character-string S2 in another string S1, which is usually longer.
If S2 is present in S1 the function returns the character position at which it Þnds starts. If there
is no match (or S1 is shorter than S2) then it returns the value zero. For example:

CHARACTER*20 SPELL

SPELL = ’ABRACADABRA’

K = INDEX(SPELL, ’RA’)

Here K will be set to 3 because this is the position of the Þrst occurrence of the string ’RA’.
To Þnd the second occurrence it is necessary to restart the search at the next character in the
main string, for example:

L = INDEX(SPELL(K+1:), ’RA’)

This will return the value 7 because the Þrst occurrence of ’RA’ in the substring ’ACADABRA’ is
at position 7. To Þnd its position in the parent string the offset, K, must be added, making 10.
The INDEX function is often useful when manipulating character information. Suppose, for

example, we have an string NAME containing the a person�s surname and initials, e.g.
Mozart,W.A

The name can be reformatted to put the initials before the surname and omit the comma like
this:

CHARACTER NAME*25, PERSON*25

*...

KCOMMA = INDEX(NAME, ’,’)

KSPACE = INDEX(NAME, ’ ’)

PERSON = NAME(KCOMMA+1:KSPACE-1) // NAME(1:KCOMMA-1)

Then PERSON will contain the string ’W.A.Mozart’ (with blanks appended to the length of
25). Note that a separate variable, PERSON, was necessary because of the rule about overlapping
strings in assignments.

7 CHARACTER HANDLING AND LOGIC 52

LEN

The LEN function takes a character argument and returns its length as an integer. The argument
may be a local character variable or array element but this will just return a constant. LEN is
more useful in procedures where character dummy arguments (and character function names)
may have their length passed over from the calling unit, so that the length may be different on
each procedure call. The length returned by LEN is that declared for the item. Sometimes it is
more useful to Þnd the length excluding trailing blanks. The next function does just that, using
LEN in the process.

INTEGER FUNCTION LENGTH(STRING)

*Returns length of string ignoring trailing blanks

CHARACTER*(*) STRING

DO 15, I = LEN(STRING), 1, -1

IF(STRING(I:I) .NE. ’ ’) GO TO 20

15 CONTINUE

20 LENGTH = I

END

7.6 Relational Expressions

A relational expression compares the values of two arithmetic expressions or two character
expressions: the result is a logical value, either true or false. Relational expressions are commonly
used in IF statements, as in this example:

IF(SENSOR .GT. UPPER) THEN

CALL COOL

ELSE IF(SENSOR .LT. LOWER) THEN

CALL HEAT

END IF

The relational operators have forms such as .GT. and .LT. because the Fortran character
set does not include the usual characters . and <. Relational expressions are most commonly
used in IF statements, but any logical variable or array element may be used to store a logical
value for use later on.

CHARACTER*10 OPTION

LOGICAL EXIT

EXIT = OPTION .EQ. ’FINISH’

*...

IF(EXIT) STOP ’Finish requested’

Logical expressions are covered in more detail in the next section.

General Forms of Relational Expression

arithmetic-exprn rel-op arithmetic-exprn
or character-exprn rel-op character-exprn
In either case the resulting expression has the logical type. The relational operator rel-op can
be any of the following:

7 CHARACTER HANDLING AND LOGIC 53

.EQ. equal to

.GE. greater than or equal to

.GT. greater than

.LE. less than or equal to

.LT. less than

.NE. not equal to

Note that these operators need a decimal point at either end to distinguish them from sym-
bolic names.

Arithmetic Comparisons

When the two arithmetic values of differing data type are compared, a conversion is automati-
cally applied to one of them (as in arithmetic expressions) to bring it to the type of the other.
The direction of conversion is always:

integer =⇒ real =⇒ complex or double precision.
When comparing integer expressions, there is a considerable difference between the .LE. and
.LT. operators, and similarly between .GE. and .GT., so that you should consider carefully
what action is required in the limiting case before selecting the appropriate operator.
In comparisons involving the other arithmetic types you should remember that the value of

a number may not be stored exactly. This means that it is unwise to rely on tests involving the
.EQ. and .NE. operators except in special cases, for example if one of the values has previously
been set to zero or some other small integer.
There are two restrictions on complex values: Þrstly they cannot be compared at all to ones

of double precision type. Secondly they cannot use relational operators other than .EQ. and
.NE. because there is no simple linear ordering of complex numbers.

Character comparisons

A character value can only be compared to another character value; if they do not have the
same length then the shorter one is padded out with blanks to the length of the other before the
comparison takes place. Tests for equality (or inequality) do not depend on the character code,
the two strings are just compared character by character until a difference is found. Comparisons
using the other operators (.GE., .GT., .LE., and .LT.) do, however, depend on the local
character code. The two expressions are compared one character position at a time until a
difference is found: the result then depends on the relative positions of the two characters in
the local collating sequence, i.e. the order in which the characters appear in the character code
table. The Fortran Standard speciÞes that the collating sequence used by all systems must have
the following basic properties:

� all the upper-case letters are in order, A < B < C etc.

� all digits are in order, 0 < 1 < 2 etc.

� all digits precede all letters or vice-versa,
� the blank (space) character precedes letters and digits.
It does not, however, specify whether letters precede digits or follow them. As a result, if

strings of mixed text are sorted using relational operators the results may be machine dependent.
For example, the expression

7 CHARACTER HANDLING AND LOGIC 54

’APPLE’ .LT. ’APRICOT’

is always true because at the two strings Þrst differ at the third character position, and the letter
�P� precedes �R� in all Fortran collating sequences. However:

’A1’ .GT. ’AONE’

will have a value true if your system uses EBCDIC but false if it uses ASCII, because the digits
follow letters in the former and precede them in the latter.
In order to allow character comparisons to be made in a truly portable way, Fortran has

provided four additional intrinsic functions. These perform character comparisons using the
ASCII collating sequence no matter what the native character code of the machine. These
functions are:

LGE(S1, S2) greater than or equal to
LGT(S1, S2) greater than
LLE(S1, S2) less than or equal to
LLT(S1, S2) less than.

They take two character arguments (of any length) and return a logical value. Thus the
expression:

LGT(’A1’, ’AONE’)

will always have the value false.
Character comparisons are case-sensitive on machines which have lower-case letters in their

character set. It is advisable to convert both arguments to the same case beforehand.

Guidelines

Systems which supports both upper and lower-case characters are usually case-sensitive: before
testing for the presence of particular keywords or commands it is usually best to convert the
an input string to a standard case, usually upper-case. Unfortunately there are no standard
intrinsic functions to do this, though many systems provide them as an extension.
In character sorting operations where the strings contain mixtures of letters, digits, or other

symbols, you should use the intrinsic functions to make the program portable. In other character
comparisons, however, the relational operator notation is probably preferable because it has a
more familiar form and may be slightly more efficient.

7.7 Logical Expressions

Logical expressions can be used in logical assignment statements, but are most commonly en-
countered in IF statements where there is a compound condition, for example:

IF(AGE .GE. 60 .OR. (STATUS .EQ. ’WIDOW’ .AND.

$ NCHILD .GT. 0) THEN

This combines the values of three relational expressions, two of them comparing arithmetic
values, the other character values. The logical operators such as .AND. and .OR. also need
decimal points at either end to distinguish them from symbolic names. The .OR. operator
performs an inclusive or, the exclusive or operator is called .NEQV..

Rules

A logical expression can have any of the following forms:

7 CHARACTER HANDLING AND LOGIC 55

� logical-term

� .NOT. logical-term

� logical-expression logical-operator logical-term

Where: logical-term can be any of the following:

� logical constant (literal or named),
� logical variable,
� logical array element,
� logical function reference,
� logical expression enclosed in parentheses,
� relational expression.
and the logical operator can be any of the following:

.AND. logical and

.OR. logical inclusive or

.EQV. logical equivalence

.NEQV. logical non-equivalence (i.e. exclusive or).

Note that the rules of logical expressions only allow two successive operators to occur if
the second of them is the unary operator .NOT. which negates the value of its operand. The
effects of the four binary logical operators are shown in the table below for the four possible
combinations of operands, x and y.

x y x .AND. y x .OR. y x .EQV. y x .NEQV. y

false false false false true false
true false false true false true
false true false true false true
true true true true true false

Note that a logical expression can have operands which are complete relational expressions,
and these can in turn contain arithmetic expressions. The complete order of precedence of the
operators in a general expression is as follows:

1. arithmetical operators (in the order deÞned in section 6.1 above).

2. relational operators

3. .NOT.

4. .AND.

5. .OR.

6. .EQV. and .NEQV.

8 CONTROL STATEMENTS 56

If the operators .EQV. and .NEQV. are used at the same level in an expression they are
evaluated from left to right.
These rules reduce the need for parentheses in logical expressions, thus:

(X .GT. A) .OR. (Y .GT. B)

would have exactly the same meaning if all the parentheses had been omitted.
A Fortran system is not required to evaluate every term in a logical expression completely if

its value can be determined more simply. In the above example, if X had been greater than A
then it would not be necessary to compare Y and B for the expression would have been true in
either case. This improves efficiency but means that functions with side-effects should not be
used.

Guidelines

Complicated logical and relational expressions can be hard to read especially if they extend on
to several successive lines. It helps to line up similar conditions on successive lines, and to use
parentheses.

7.8 Logical Assignment Statements

A logical assignment statement has the form:
logical-var = logical-expression

Where the logical-var can be a logical variable or array element. Logical variables and array
elements are mainly used to store the values of relational expressions until some later point
where they are used in IF statements.

8 Control Statements

Executable statements are normally executed in sequence except as speciÞed by control state-
ments. The END= and ERR= keywords of input/output statements can also affect the execution
sequence.

8.1 Control Structures

Branches

The best way to select alternative paths through a program is to use the block-IF structure:
this may comprise a single block to be executed when a speciÞed condition is true or several
blocks to cover several eventualities. Where the IF-block would only contain one statement it
is possible to use an abbreviated form called (for historical reasons) the logical-IF statement.
There is also a computed GO TO statement which can produce a multi-way branch similar to

the �case� statements of other languages.

Loops

Another fundamental requirement is that of repetition. If the number of cycles is known in
advance then the DO statement should be used. This also controls a block of statements known
as the DO-loop. A CONTINUE statement usually marks the end of a DO-loop.
Fortran has no direct equivalent of the �do while� and �repeat until� forms available in some

program languages for loops of an indeÞnite number of iterations, but they can be constructed
using simple GO TO and IF statements.

8 CONTROL STATEMENTS 57

Other Control Statements

The STOP statement can be used to terminate execution. Other statements which affect execution
sequence are described in other sections: the END statement was covered in section 4.7; procedure
calls including the CALL and RETURN statements are described in section 9.

8.2 IF-Blocks

The simplest form of IF-block looks like this:

IF(N .NE. 0) THEN

AVERAG = SUM / N

AVGSQ = SUMSQ / N

END IF

The statements in the block are only executed if the condition is true. In this example the
statements in the block are not executed if N is zero in order to avoid division by zero.
The IF-block can also contain an ELSE statement to handle the alternative:

IF(B**2 .GE. 4.0 * A * C) THEN

WRITE(UNIT=*,FMT=*)’Real roots’

ELSE

WRITE(UNIT=*,FMT=*)’No real roots’

END IF

Since the IF statement contains a logical expression its value can only be true or false, thus
one or other of these blocks will always be executed.
If there are several alternative conditions to be tested, they can be speciÞed with ELSE IF

statements:

IF(OPTION .EQ. ’PRINT’) THEN

CALL OUTPUT(ARRAY)

ELSE IF(OPTION .EQ. ’READ’) THEN

CALL INPUT(ARRAY)

ELSE IF(OPTION .EQ. ’QUIT’) THEN

CLOSE(UNIT=OUT)

STOP ’end of program’

ELSE

WRITE(UNIT=*,FMT=*)’Incorrect reply, try again...’

END IF

There can be any number of ELSE IF blocks but in each case one, and only one, will be
executed each time. Without an ELSE block on the end an nothing would have happened when
an invalid option was selected.

Block-IF General Rules

The general form of the block-if structure is as follows:

IF(logical-expression) THEN

a block of statements

ELSE IF(logical-expression) THEN

8 CONTROL STATEMENTS 58

another block of statements

ELSE

a final block of statements

END IF

The IF THEN, ELSE IF, and ELSE statements each govern one block of statements. There can
be any number of ELSE IF statements. The ELSE statement (together with its block) is also
optional, and there can be at most one of these.
The Þrst block of statements is executed only if the Þrst expression is true. Each block after

an ELSE IF is executed only if none of the preceding blocks have been executed and the attached
ELSE IF expression is true. If there is an ELSE block it is executed only if none of the preceding
blocks has been executed.
After a block has been executed control is transferred to the statement following the END IF

statement at the end of the structure (unless the block ends with some statement which transfers
control elsewhere).
Any block can contain a complete block-IF structure properly nested within it, or a complete

DO-loop, or any other executable statements (except END).
It is illegal to transfer control into any block from outside it, but there is no restriction on

transferring control out of a block.
The rules for logical expressions are covered in section 7.7.

Guidelines

The indentation scheme shown in the examples above is not mandatory but the practice of
indenting each block by a few characters relative to the rest of the program is strongly recom-
mended. It makes the structure of the block immediately apparent and reduces the risk of failing
to match each IF with an END IF. An indenting scheme is especially useful when IF-blocks are
nested within others. For example:

IF(POWER .GT. LIMIT) THEN

IF(.NOT. WARNED) THEN

CALL SET(’WARNING’)

WARNED = .TRUE.

ELSE

CALL SET(’ALARM’)

END IF

END IF

The limited width of the statement Þeld can be a problem when IF-blocks are nested to a very
great depth: but this tends to mean that the program unit is getting too complicated and that
it will usually be beneÞcial to divide it into subroutines. If you accidentally omit an END IF

statement the compiler will ßag the error but will not know where you forgot to put it. In such
cases the compiler may get confused and generate a large number of other error messages.
When an IF-block which is executed frequently contains a large number of ELSE IF state-

ments it will be slightly more efficient to put the most-likely conditions near the top of the list
as when they occur the tests lower down in the list will not need to be executed.

8.3 DO-Loops

The DO statement controls a block of statements which are executed repeatedly, once for each
value of a variable called the loop-control variable. The number of iterations depends on the

8 CONTROL STATEMENTS 59

parameters of the DO statement at the heads of the loop. The Þrst item after the keyword �DO�
is the label which is attached to the last statement of the loop. For example:

*Sum the squares of the first N elements of the array X

SUM = 0.0

DO 15, I = 1,N

SUM = SUM + X(I)**2

15 CONTINUE

If we had wanted only to sum alternate elements of the array we could have used a statement
like:

DO 15,I = 1,N,2

and then the value of I in successive loops would have been 1, 3, 5, etc. The Þnal value would be
N if N were odd, or only to N-1 if N were even. If the third parameter is omitted the step-size
is one; if it is negative then the steps go downwards. For example

DO 100,I = 5,1,-1

WRITE(UNIT=*,FMT=*) I**2

100 CONTINUE

will produce 5 records containing the values 25, 16, 9, 4, and 1 respectively.
Loops can be nested to any reasonable depth. Thus the following statements will set the two

dimensional array FIELD to zero.

REAL FIELD(NX, NY)

DO 50, IY = 1,NY

DO 40, IX = 1.NX

FIELD(IX,IY) = 0.0

40 CONTINUE

50 CONTINUE

General Form of DO Statement

The DO statement has two forms:
DO label , variable = start , limit, step
DO label , variable = start , limit

In the second form the step size is implicitly one.
The label marks the Þnal statement of the loop. It must be attached to an executable

statement further on in the program unit. The rules permit this statement to be any executable
statement except another control statement, but it strongly recommended that you use the
CONTINUE statement here. CONTINUE has no other function except to act as a dummy place-
marker.
The comma after the label is optional but, as noted in section 1.4, is a useful precaution.
The variable which follows is known as the loop control variable or loop index; it must be a

variable (not an array element) but may have integer, real, or double precision type.
The start, limit, and step values may be expressions of any form of integer, real, or double

precision type. If the step value is present it must not be zero, of omitted it is taken as one.
The number of iterations is computed before the start of the Þrst one, using the formula:

iterations = MAX(INT(0, (limit - start + step) / step))
Note that if the limit value is less than start the iteration count is zero unless step is negative.

8 CONTROL STATEMENTS 60

A zero iteration count is permitted but means that the contents of the loop will not be executed
at all and control is transferred to the Þrst statement after the end of the loop. The loop control
variable does not necessarily reach the limiting value, especially if the step-size is larger than
one.
Statements within the loop are permitted to alter the value of the expressions used for start,

limit, or step but this has no effect on the iteration count which is Þxed before the Þrst iteration
starts.
The loop control variable may be used in expressions but a new value must not be assigned

to it within the loop.
DO-loops may contain other DO-loops completely nested within them provided that a different

loop control variable is used in each one. Although it is permissible for two different loops to
terminate on the same statement, this can be very confusing. It is much better to use a separate
CONTINUE statement at the end of each loop. Similarly complete IF-blocks may be nested within
DO-loops, and vice-versa.
Other control statements may be used to transfer control out of the range of a DO-loop but

it is illegal to try to jump into a loop from outside it. If you exit from a loop prematurely in
this way the loop control variable keeps its current value and may be used outside to determine
how many loops were actually executed.
After the normal termination of a DO-loop the loop control variable has the value it had on

the last iteration plus one extra increment of the step value. Thus with:

DO 1000, NUMBER = 1,100,3

1000 CONTINUE

On the last iteration NUMBER would be 99, and on exit from the loop NUMBER would be
102. This provision can be useful in the event of exit from a loop because of some error:

PARAMETER (MAXVAL = 100)

REAL X(MAXVAL)

DO 15, I = 1,MAXVAL

READ(UNIT=*, FMT=*, END=90) X(I)

15 CONTINUE

90 NVALS = I - 1

The action of the statement labelled 90 is to set NVALS to the number of values actually read
from the Þle whether there was a premature exit because the end-of-Þle was detected or it
reached the end of the array space at MAXVAL.

Guidelines

If you a loop-control variable of any type other than integer there is a risk that rounding errors
will accumulate as it is incremented repeatedly. In addition, if the expressions for the start,
limit, and step values are not of integer type the number of iterations may not be what you
expect because the formula uses the INT function (not NINT). None of these problems can
occur if integer quantities are used throughout the DO statement.

8.4 Logical-IF Statement

The logical-IF statement is best regarded as a special case of the IF-block when it only contains
one statement. Thus:

8 CONTROL STATEMENTS 61

IF(E .NE. 0.0) THEN

RECIPE = 1.0 / E

END IF

can be replaced by a single logical-IF statement:
IF(E .NE. 0.0) RECIPE = 1.0 / E

The general form of the logical-IF statement is:
IF(logical-expression) statement

The statement is executed only if the logical expression has a true value. Any executable
statement can follow except DO, IF, ELSE IF, ELSE, END IF, or END.

8.5 Unconditional GO TO Statement

The unconditional GO TO statement simply produces a transfer of control to a labelled executable
statement elsewhere in the program unit. Its general form is:

GO TO label
Note that control must not be transferred into an IF-block or a DO-loop from outside it.

Guidelines

The unconditional GO TO statement makes it possible to construct programs with a very undisci-
plined structure; such programs are usually hard to understand and to maintain. Good program-
mers use GO TO statements and labels very sparingly. Unfortunately it is not always possible to
avoid them entirely in Fortran because of a lack of alternative control structures.
The next example Þnds the highest common factor of two integers M and N using a Euclid�s

algorithm. It can be expressed roughly: while (M N) subtract the smaller of M and N from the
other repeat until they are equal.

PROGRAM EUCLID

WRITE(UNIT=*, FMT=*) ’Enter two integers’

READ(UNIT=*, FMT=*) M, N

10 IF(M .NE. N) THEN

IF(M .GT. N) THEN

M = M - N

ELSE

N = N - M

END IF

GO TO 10

END IF

WRITE(UNIT=*, FMT=*)’Highest common factor = ’, M

END

8.6 Computed GO TO Statement

The computed GO TO statement is an alternative to the block-IF when a large number of options
are required and they can be selected by the value of an integer expression. The general form
of the statement is:

GO TO(label1, label2, ... labelN), integer-expression
The comma after the right parenthesis is optional.

8 CONTROL STATEMENTS 62

The expression is evaluated; if its value is one then control is transferred to the statement
attached to the Þrst label in the list; if it is two control goes to the second label, and so on. If
the value of the expression is less than one or higher than N (where there are N labels in the list)
then the statement has no effect and execution continues with the next statement in sequence.
The same label may be present more than once in the list.
The computed GO TO suffers from many of the same drawbacks as the unconditional GO TO,

since if its branches are used without restraint they can become impenetrable thickets. The best
way is to follow the computed GO TO statement with the sections of code in order, all except
the last terminated with its own unconditional GO TO to transfer control to the end of the whole
structure.
Any computed GO TO structure could be replaced by an IF-block with a suitable number

of ELSE IF clauses. If there are a very large number of cases then this would be a little less
efficient; this has to be balanced against the increased clarity of the IF structure compared to
the label-ridden GO TO.
An example of the use of the computed GO TO is given here in a subroutine which computes

the number of days in a month, given the month number MONTH between 1 and 12, and the
four-digit year number in YEAR. Note that each section of code except the last is terminated
with a GO TO statement to escape from the structure.

SUBROUTINE CALEND(YEAR, MONTH, DAYS)

INTEGER YEAR, MONTH, DAYS

GO TO(310,280,310,300,310,300,310,310,300,310,300,310)MONTH

* Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec

STOP ’Impossible month number’

*February: has 29 days in leap year, 28 otherwise.

280 IF(MOD(YEAR,400) .EQ. 0 .OR. (MOD(YEAR,100) .NE. 0

$.AND. MOD(YEAR,4) .EQ. 0)) THEN

DAYS = 29

ELSE

DAYS = 28

END IF

GO TO 1000

* Short months

300 DAYS = 30

GO TO 1000

* Long months

310 DAYS = 31

* return the value of DAYS

1000 END

8.7 STOP Statement

The STOP statement simply terminates the execution of the program and returns control to the
operating system. Its general form is:

STOP ’ character constant ’

The character constant (which must be a literal and not named constant) is optional: if present
its value is �made available� to the user; usually it the message appears on your terminal. For
compatibility with Fortran66 it is possible to use a string of one to Þve decimal digits instead
of the character constant.

9 PROCEDURES 63

Ideally a program should only return control to the operating system from one point, the
end of the main program, where the END statement does all that is necessary. In practice, even
in the best-planned programs, situations can arise which make it pointless to continue. If these
are detected in the main program there is always the option of jumping to the END statement,
but within procedures there may be no choice but to use a STOP statement.

9 Procedures

Any set of computations can be encapsulated in a procedure. The main purpose of a procedure
is to allow the same set of operations to be invoked at different points in a program. Procedures
also make it possible to use the same code in several different programs. It is good practice to
split a large program into sections whenever it becomes too large to be handled conveniently in
one piece. The optimum size of a program unit is quite small, probably no more than 100 lines.
Four different forms of procedure can be used in Fortran programs:-

� Intrinsic functions
� Statement functions
� External functions (also known as function subprograms)
� Subroutines.

Intrinsic functions are provided automatically by the Fortran system, whereas the other three
forms of procedure are user-written. Statement functions, which are deÞned with the statement
function statement, can be only be used in the program unit in which they were deÞned and
are subject to other special restrictions. External functions and subroutines are two alternative
forms of external procedure: each is speciÞed as a separate program unit and can be used (with
only a few restrictions) anywhere else in the program.

9.1 Intrinsic Functions

Intrinsic functions have a number of unique properties. The data type of each intrinsic function
is known to the Fortran system and is not subject to the normal rules. IMPLICIT and type
statements alone have no effect on them. Some intrinsic functions have generic names: when
these are used the compiler selects the appropriate speciÞc function according to the data type
of the arguments.
A few intrinsic functions such as MAX, MIN, and CMPLX, are allowed to have a variable

number of arguments, but all of the arguments must have the same data type. User-written
procedures cannot have optional arguments or generic type.
Although intrinsic functions can be used in any program unit, their names are not global,

nor are they reserved words. It is, however, best to avoid choosing a name for a variable or
array which is identical to that of an intrinsic function. It may cause confusion and in the long
run it may make it more difficult to enhance the program. A name clash is more serious if it
involves an external function or subroutine, for in this case the external procedure name must
be speciÞed in an EXTERNAL statement to resolve the ambiguity. By this means it is possible to
substitute an external function of your own for one of the intrinsic functions.
The Fortran Standard speciÞes a fairly extensive set of intrinsic functions which must always

be available but it does not prevent the provision of additional ones. Many systems provide
additional intrinsic functions which, for example, obtain the current date and time, generate

9 PROCEDURES 64

pseudo-random numbers, or evaluate Gaussian probability. The main drawback in using non-
standard functions is that you may have to Þnd a substitute if your program is moved to another
system which does not have the same extensions.
The standard intrinsic functions for the arithmetic types are described in detail in section

6.2; those used with character-strings are covered in section 7.5. A complete alphabetical list is
provided in the appendix.

9.2 Statement Functions

Statement functions can be deÞned within any executable program unit by means of statement
function statements. They can only be used, however, within the same program unit. Although
statement functions have limited uses, they are unjustly neglected by many programmers.
The statement function statement resembles an ordinary assignment statement. For example:

FAHR(CELS) = 32.0 + 1.8 * CELS

The function FAHR converts a temperature in degrees Celsius to its equivalent in Fahrenheit.
Thus FAHR(20.0) would return a value 68.0 approximately.
A statement function can have any number of dummy arguments (such as CELS above) all

of which must appear in the expression on the right-hand side; this expression may also include
constants, variables, or array elements used elsewhere in the program. When the function is
called the current values of these items will be used. For example:

REAL M1, M2, G, R

NEWTON(M1, M2, R) = G * M1 * M2 / R**2

A reference to the function in an assignment statement such as:
FORCE = NEWTON(X, Y, DIST)

will return a value depending on the values of the actual arguments X, Y, and DIST, and that
of the variable G at the time the function is referenced.
DeÞnitions of statement functions can also include references to intrinsic functions, external

functions, or previously deÞned statement functions:

PARAMETER (PI = 3.14159265, DTOR = PI/180.0)

SIND(THETA) = SIN(THETA * DTOR)

COSD(THETA) = COS(THETA * DTOR)

TAND(THETA) = SIND(THETA) / COSD(THETA)

These deÞnitions allow trigonometry on angles speciÞed in degrees rather than radians.
The scope of each dummy argument name (such as THETA above) is that of the statement

alone; these names can be used elsewhere in the program unit as variables of the same data type
with no effect whatever on the evaluation of the function.
Statement functions can have any data type; the name and arguments follow the normal type

rules. They can be useful in character handling, for example:

LOGICAL MATH, DIGIT, DORM

CHARACTER C*1

DIGIT(C) = LGE(C, ’0’) .AND. LLE(C, ’9’)

MATH(C) = INDEX(’+-*/’, C) .NE. 0

DORM(C) = DIGIT(C) .OR. MATH(C)

These three functions each return a logical value when presented with a single character argu-
ment: DIGIT tests to see whether the character is a digit, MATH whether it is an operator symbol,

9 PROCEDURES 65

and DORM will test for either condition. Note the use of the lexical comparison functions LGE

and LLE in the deÞnition of DIGIT which make it completely independent of the local character
code.

Statement Function Rules

Statement function statements must appear after any the speciÞcation statements but before
all executable statements in the program unit. They may be intermixed with DATA and FORMAT

statements. The general form is:
function (dummy1, dummy2, ... dummyN) = expression

The function may have any data type; the expression will normally have the same data type
but if both have an arithmetic type then the normal conversion rules for arithmetic assignment
statements apply.
The name of the function must be distinct from all other symbolic names in the program

unit. It may appear in type statements but not in other speciÞcation statements. (There is one
exception: a common block is permitted to have the same name as a statement function but
since common block names always appear between slashes there is little risk of confusion). If
the function has character type its length must be an integer constant expression.
The dummy arguments are simply symbolic names. A name may not appear more than once

in the same list. These names may be used elsewhere in the program unit as variables of the
same data type.
The expression must contain the dummy arguments as operands. The operands may also

include:

� literal constants, named constants, variables, and array elements; these will have their
values at the time the function is executed and must then be deÞned.

� references to intrinsic and external functions,
� references to statement functions deÞned earlier in the same program unit,

� complete expressions enclosed in parentheses.
Note that character substrings are not permitted. The variables and array elements used in

the expression must be deÞned at the time that the function reference is executed.

Guidelines

Although statement functions have a limited role to play in programs because they can only be
deÞned in a single statement, references to statement functions they may be executed more effi-
ciently than references to external functions; many modern compilers expand statement function
references to in-line code when it is advantageous to do so.
If the same statement function is needed in more than one program unit it would is possible

to use an INCLUDE facility to provide the same deÞnition each time, but it will usually be better
to use an external function instead.

9.3 External Procedures

There are two forms of external procedure, both of which take the form of a complete program
unit.

9 PROCEDURES 66

� External functions, which are speciÞed by a program unit starting with a FUNCTION state-
ment. They are executed whenever the corresponding function is used as an operand in
an expression.

� Subroutines, which are speciÞed by a program unit starting with a SUBROUTINE statement.
They are executed in response to a CALL statement.

In either form the last statement of the program unit must be an END statement. Any other
statements (except PROGRAM or BLOCK DATA statements) may be used within the program unit.
There are two statements provided especially for use in external procedures. The SAVE

statement ensures that the values of local variables and arrays are preserved after the procedure
returns control to the calling unit: these values will then be available if the procedure is executed
subsequently. The RETURN statement may be used to terminate the execution of the procedure
and cause an immediate return to the control of the calling unit. Execution of the END statement
at the end of the procedure has exactly the same effect. Both of these are described in full later
in the section.
Most Fortran systems also allow external procedures to be speciÞed in languages other than

Fortran: they can be called in the same way as Fortran procedures but their internal operations
are, of course, beyond the scope of this book.
It is best to think of the subroutine as the more general form of procedure; the external

function should be regarded as a special case for use when you only need to return a single value
to the calling unit.
Here is a simple example of a procedure which converts a time of day in hours, minutes, and

seconds into a count of seconds since midnight. Since only one value needs to be returned, the
procedure can have the form of an external function. (In fact this is such a simple example that
it would have been possible to deÞne it as a statement function.)

*TSECS converts hours, minutes, seconds to total seconds.

REAL FUNCTION TSECS(NHOURS, MINS, SECS)

INTEGER NHOURS, MINS

REAL SECS

TIME = ((NHOURS * 60) + MINS) * 60 + SECS

END

Thus if we use a function reference like TSECS(12,30,0.0) in an expression elsewhere in the
program it will convert the time to seconds since midnight (about 45000.0 seconds in this case).
The items in parentheses after the function name :

(12,30,0.0)

are known as the actual arguments of the function; these values are transferred to the corre-
sponding dummy arguments

(NHOURS, MINS, SECS)

of the procedure before it is executed. In this example the argument list is used only to transfer
information into the function from outside, the function name itself returns the required value
to the calling program. In subroutines, however, there is no function name to return information
but the arguments can be used for transfers in either direction, or both. The rules permit them
to be used in this more general way in functions, but it is a practice best avoided.
The next example performs the inverse conversion to the TSECS function. Since it has to

return three values to the calling program unit the functional form is no longer appropriate, and
a subroutine will be used instead.

9 PROCEDURES 67

*Subroutine HMS converts TIME in seconds into hours, mins,secs.

SUBROUTINE HMS(TIME, NHOURS, MINS, SECS)

REAL TIME, SECS

INTEGER NHOURS, MINS

NHOURS = INT(TIME / 3600.0)

SECS = TIME - 3600.0 * NHOURS

MINS = INT(SECS / 60.0)

SECS = TIME - 60.0 * MINS

END

In this case the subroutine could be executed by using a statement such as:

CALL HMS(45000.0, NHRS, MINS, SECS)

WRITE(UNIT=*, FMT=*) NHRS, MINS, SECS

Here the Þrst argument transfers information into the subroutine, the other three are used to
return the values which it calculates. You do not have to specify whether a particular argument
is to transfer information in or out (or in both directions), but there are rules about the form
of actual argument that you can use in each case. These are explained in full below.

Procedure Independence

Each program unit has its own independent set of symbolic names and labels. Type statements
and IMPLICIT statements may be used to specify their data types.
External procedures can themselves call any other procedures and these may call others

in turn, but procedure are not allowed to call themselves either directly or indirectly; that is
recursive calling is not permitted in Fortran.

Information Transfer

Information can be transferred to and from an external procedure by any of three methods.

� An argument list: as shown in the two examples above. This is the preferred method of
interfacing as it is the most ßexible and modular. It is described in detail in the remainder
of this section.

� Common blocks: these are lists of variables or arrays which are stored in areas of areas
of memory shared between two or more program units. They are useful in special cir-
cumstances when procedures have to be coupled closely together, but are otherwise less
satisfactory. Common blocks are covered in detail in section 12.

� External Þles: interfacing via external Þles is neither convenient nor efficient but it is
mentioned here to point out that external Þles are global. Once a Þle has been opened in
any program unit it can be accessed anywhere in the program provided that the appropriate
I/O unit number is available. A unit number can be passed into a procedure as an integer
argument.

Procedure Execution

It is not necessary to know how the Fortran system actually transfers information from one
procedure to another to make use of the system, but the rules governing the process are somewhat

9 PROCEDURES 68

complicated and it may be easier to understand them if you appreciate the basis on which they
have been formulated. The rules in the Fortran Standard are based on the assumption that
the address of an actual argument is transferred in each case: this may or may not be true in
practice but the properties will be the same as if it is.
This means that when you reference a dummy variable or assign a new value to one you are

likely to be using the memory location occupied by the actual argument. By this means even
large arrays can be transferred efficiently to procedures. A slight modiÞcation of this system is
needed for items of character type so that the length of the item can be transferred as well as
its address.
When a function reference or CALL statement is executed any expressions in the argument

list are evaluated; the addresses of the arguments are then passed to the procedure. When it
returns control this automatically makes updated values available to the corresponding items in
the actual argument list.

Functions with Side-effects

The rules of Fortran allow functions to have side-effects, that is to alter their actual arguments
or to change other variables within common blocks. Functions with side-effects cannot be used
in expressions where any of the other operands of the expression would be affected, nor can
they be used in subscript or substring references when any other expression used in the same
references would be affected. This rule ensures that the value of an expression cannot depend
arbitrarily on the way in which the computer chooses to evaluate it.
There are also restrictions on functions which make use of input/output statements even on

internal Þles: these cannot be used in expressions in other I/O statements. This is to avoid the
I/O system being used recursively.
By far the best course is to use the subroutine form for any procedure with side-effects.

9.4 Arguments of External Procedures

Arguments can pass information into a procedure or out from it, or in both directions. This
just depends on the way that the dummy argument is used within the procedure. Although any
argument order is permitted, it is common practice to put input arguments Þrst, then those
that pass information both ways, and then arguments which just return information from the
procedure.
The rules for argument association are the same for both forms of external procedure. The list

of dummy arguments (sometimes called formal arguments) of an external procedure is speciÞed
in its FUNCTION or SUBROUTINE statement. There can be any number of arguments, including
none at all. If there are no arguments then the parentheses can be omitted in the CALL and
SUBROUTINE statement but not in a FUNCTION statement or function reference.
The dummy argument list is simply a list of symbolic names which can represent any mixture

of

� variables
� arrays
� procedures.
A name cannot, of course, appear twice in the same dummy argument list.
Dummy variables, arrays, and procedures are distinguished only by the way that they are

used within the procedure. The dimension bounds of a dummy arrays must be speciÞed in a

9 PROCEDURES 69

subsequent type or DIMENSION statement; dummy procedures must appear in a CALL or EXTERNAL

statement or be used in a function reference; anything else is, by elimination, a dummy argument
variable.
Dummy argument variables and arrays can be used in executable statements in just the

same way as local items of the same form, but they cannot appear in SAVE, COMMON, DATA, or
EQUIVALENCE statements.

Argument Association

The actual arguments of the function reference or CALL statement become associated with the
corresponding dummy arguments of the FUNCTION or SUBROUTINE statement. The main rules
are as follows:

� There must be the same number of actual and dummy arguments; they are associated solely
by their position in the two lists. Optional arguments are not permitted in Fortran77.

� If the dummy argument is a variable, array, or procedure used as a function then the
corresponding actual argument must have the same data type.

� If the dummy argument is an array then its array bounds must not be larger than those
of the corresponding actual argument. Alternatively the dimension bounds of a dummy
array can be passed in by means of other procedure arguments to form an adjustable. This
option and the assumed-size array are both described in section 9.6.

� If the dummy argument is a character item then its length must not be greater than that
of the corresponding actual argument. Alternatively there is a passed-length option for
character arguments: see section 9.5.

Because program units are compiled independently, it is difficult for the compiler to check for
mismatches in actual and dummy argument lists. Although mismatches could, in principle, be
detected by the linker, this rarely seems to happen in practice. Errors, particularly mismatches
of data type or array bounds, are especially easy to make but hard to detect. Sometimes the
only indication is that the program produces the wrong answer. This shows how important it
is to check procedure interfaces.

Duplicate Arguments

The same actual argument cannot be used more than once in a procedure call if the corresponding
dummy arguments are assigned new values. For example, with:

SUBROUTINE FUNNY(X, Y)

X = 2.0

Y = 3.0

END

A call such as:
CALL FUNNY(A, A)

would be illegal because the system would try to assign both 2.0 and 3.0 to the variable A.
A similar restriction applies to variables which are returned via a common block and also

through the procedure argument list.

9 PROCEDURES 70

9.5 Variables as Dummy Arguments

If the dummy argument of a procedure is a variable and it has a value assigned to it within the
procedure, then the corresponding actual argument can be:

� a variable,
� an array element, or
� a character substring.
If, however, the dummy variable preserves its initial value throughout the execution then the

actual argument can be any of these three forms above or alternatively:

� an expression of any form (including a constant).

The reason for this restrictions is easy to see by considering the ways of calling the subroutine
SILLY in the next example:

SUBROUTINE SILLY(N, M)

N = N + M

END

If it is called with a statement such as:

NUMBER = 10

CALL SILLY(NUMBER, 5)

then the value of NUMBER will be updated to 15 as a result of the call. But it is illegal to call
the function with a constant as the Þrst argument, thus:

CALL SILLY(10, 7)

because on exit the subroutine will attempt to return the value of 17 to the actual argument
which was speciÞed as the constant ten. The effects of committing such an error are system-
dependent. Some systems detect the attempt to over-write a constant and issue an error message;
others ignore the attempt and allow the program to continue; but some systems will actually
go ahead and over-write the constant with a new value, so that if you use the constant 10 in
some subsequent statement in the program you may get a value of 17. Since this can have very
puzzling effects and be hard to diagnose, it is important to avoid doing this inadvertently.
If you make use of procedures written by other people you may be worried about unintentional

effects of this sort. In principle it should be possible to prevent a procedure altering a constant
argument by turning each one into an expression, for example like this:

CALL SILLY(+10, +5)

or
CALL SILLY((10), (5))

Although either of these forms should protect the constants, it is still against the rules of Fortran
for the procedure to attempt to alter the values of the corresponding dummy arguments. You
will have to judge whether it is better to break the rules of the language than to risk corrupting
a constant.

9 PROCEDURES 71

Expressions, Subscripts, and Substrings

If the actual argument contains expressions then these are evaluated before the procedure starts
to execute; even if the procedure later modiÞes operands of the expression this has no effect
on the value passed to the dummy argument. The same rule applies to array subscript and
character substring expressions. For example, if the procedure call consists of:

CALL SUB(ARRAY(N), N, SIN(4.0*N), TEXT(1:N))

and the procedure assigns a new value to the second argument, N, during its execution, it has
no effect on the other arguments which all use the original value of N. The updated value of N
will, of course, be passed back to the calling unit.

Passed-length Character Arguments

A character dummy argument will have its length set automatically to that of the corresponding
actual argument if the special length speciÞcation of *(*) is used.
To illustrate this, here is a procedure to count the number of vowels in a character string. It

uses the intrinsic function LEN to determine the length of its dummy argument, and the INDEX
function to see whether each character in turn is in the set �AEIOU� or not.

INTEGER FUNCTION VOWELS(STRING)

CHARACTER*(*) STRING

VOWELS = 0

DO 25, K = 1,LEN(STRING)

IF(INDEX(’AEIOU’, STRING(K:K)) .NE. 0) THEN

VOWELS = VOWELS + 1

END IF

25 CONTINUE

END

Note that the function has a data type which is not the default for its initial letter so that it
will usually be necessary to specify its name in a INTEGER statement in each program unit which
references the function.
This passed-length mechanism is recommended not only for general-purpose software where

the actual argument lengths are unknown, but in all cases unless there is a good reason to specify
a dummy argument of Þxed length.
There is one restriction on dummy arguments with passed length: they cannot be operands

of the concatenation operator (//) except in assignment statements. Note that the same form
of length speciÞcation �*(*)� can be used for named character constants but with a completely
different meaning: named constants are not subject to this restriction.

9.6 Arrays as Arguments

If the dummy argument of a procedure is an array then the actual argument can be either:

� an array name (without subscripts)
� an array element.
The Þrst form transfers the entire array; the second form, which just transfers a section

starting at the speciÞed element, is described in more detail further on.

9 PROCEDURES 72

The simplest, and most common, requirement is to make the entire contents of an array
available in a procedure. If the actual argument arrays are always going to be the same size
then the dummy arrays in the procedure can use Þxed bounds. For example:

SUBROUTINE DOT(X, Y, Z)

*Computes the dot product of arrays X and Y of 100 elements

* producing array Z of the same size.

REAL X(100), Y(100), Z(100)

DO 15, I = 1,100

Z(I) = X(I) * Y(I)

15 CONTINUE

END

This procedure could be used within a program unit like this:

PROGRAM PROD

REAL A(100), B(100), C(100)

READ(UNIT=*,FMT=*)A,B

CALL DOT(A, B, C)

WRITE(UNIT=*,FMT=*)C

END

This is perfectly legitimate, if inßexible, since it will not work on arrays of any other size.

Adjustable Arrays

A more satisfactory solution is to generalise the procedure so that it can be used on arrays
of any size. This is done by using an adjustable arrays declaration. Here the operands in
each dimension bound expression may include integer variables which are also arguments of the
procedure (or members of a common block). The following example shows how this may be
done:

SUBROUTINE DOTPRO(NPTS, X, Y, Z)

REAL X(NPTS), Y(NPTS), Z(NPTS)

DO 15, I = 1,NPTS

* etc.

In this case the calling sequence would be something like:
CALL DOTPRO(100, A, B, C)

An adjustable array declaration is permitted only for arrays which are dummy arguments, since
the actual array space has in this case already been allocated in the calling unit or at some
higher level. The method can be extended in the obvious way to cover multi-dimensional arrays
and those with upper and lower bounds, for example:

SUBROUTINE MULTI(MAP, K1, L1, K2, L2, TRACE)

DOUBLE PRECISION MAP(K1:L1, K2:L2)

REAL TRACE(L1-K1+1)

The adjustable array mechanism can, of course, be used for arrays of any data type; an adjustable
array can also be passed as an actual argument of a procedure with, if necessary, the array bounds
passed on in parallel.

9 PROCEDURES 73

Each array bound of a dummy argument array may be an integer expression involving not
only constants but also integer variables passed in to the procedure either as arguments or by
means of a common block. The extent of each dimension of the array must not be less than one
and must not be greater than the extent of the corresponding dimension of the actual argument
array.
If any integer variable (or named constant) used in an array-bound expression has a name

which does not imply integer type then the INTEGER statement which speciÞes its type must
precede its use in a dimension-bound expression.

Assumed-size Arrays

There may be circumstances in which it is impracticable to use either Þxed or adjustable array
declarations in a procedure because the actual size of the array is unknown when the procedure
starts executing. In this case an assumed-size array is a viable alternative. These are also only
permitted for dummy argument arrays of procedures, but here the array is, effectively, declared
to be of unknown or indeÞnite size. For example:

REAL FUNCTION ADDTWO(TABLE, ANGLE)

REAL TABLE(*)

N = MAX(1, NINT(SIN(ANGLE) * 500.0))

ADDTWO = TABLE(N) + TABLE(N+1)

END

Here the procedure only knows that array TABLE is one-dimensional with a lower-bound of
one: that is all it needs to know to access the appropriate elements N and N+1. In executing
the procedure it is our responsibility to ensure that the value of ANGLE will never result in
an array subscript which is out of range. This is always a danger with assumed-size arrays.
Because the compiler does not have any information about the upper-bound of an assumed-size
array it cannot use any array-bound checking code even if it is normally able to do this. An
assumed-size array can only have the upper-bound of its last dimension speciÞed by an asterisk,
all the other bounds (if any) must conform to the normal rules (or be adjustable using integer
arguments).
An assumed size dummy argument array is speciÞed with an asterisk as the upper bound of

its last (or only) dimension. All the other dimension bounds, if any, must conform to normal
rules for local arrays or adjustable arrays.
There is one important restriction on assumed size arrays: they cannot be used without

subscripts in I/O statements, for example in the input list of a READ statement or the output
list of a WRITE statement. This is because the compiler has no information about the total size
of the array when compiling the procedure.

Array Sections

The rules of Fortran require that the extent of an array (in each dimension if it is multi-
dimensional) must be at least as large in the actual argument as in the dummy argument, but
they do not require actual agreement of both lower and upper bounds. For example:

PROGRAM CONFUS

REAL X(-1:50), Y(10:1000)

READ(UNIT=*,FMT=*) X, Y

CALL OUTPUT(X)

9 PROCEDURES 74

CALL OUTPUT(Y)

END

SUBROUTINE OUTPUT(ARRAY)

REAL ARRAY(50)

WRITE(UNIT=*,FMT=*) ARRAY

END

The effect of this program will be to output the elements X(-1) to X(48) since X(48) corresponds
to ARRAY(50), and then output Y(10) to Y(59) also. The subroutine will work similarly on a
slice through a two-dimensional array:

PROGRAM TWODIM

REAL D(100,20)

* ...

NSLICE = 15

CALL OUTPUT(D(1,NSLICE))

In this example the slice of the array from elements D(1,15) to D(50,15) will be written to the
output Þle. In order to work out what is going to happen you need to know that Fortran arrays
are stored with the Þrst subscript most rapidly varying, and that the argument association
operates as if the address of the speciÞed element were transferred to the base address of the
dummy argument array.
The use of an array element as an actual argument when the dummy argument is a complete

array is a very misleading notation and the transfer of array sections should be avoided if at all
possible.

Character Arrays

When a dummy argument is a character array the passed-length mechanism can be used in the
same way as for a character variable. Every element of the dummy array has the length that
was passed in from the actual argument.
For example, a subroutine designed to sort an array of character strings into ascending order

might start with speciÞcation statements like these:

SUBROUTINE SORT(NELS, NAMES)

INTEGER NELS

CHARACTER NAMES(NELS)*(*)

Alternatively the actual argument can be a character variable or substring. In such cases it
usually makes more sense not to use the passed-length mechanism. For example an actual
argument declared:

CHARACTER*80 LINE

could be passed to a subroutine which declared it as an array of four 20-character elements:

SUBROUTINE SPLIT(LINE)

CHARACTER LINE(4)*20

Although this is valid Fortran, it is not a very satisfactory programming technique to use a
procedure call to alter the shape of an item so radically.

9 PROCEDURES 75

9.7 Procedures as Arguments

Fortran allows one procedure to be used as the actual argument of another procedure. This
provides a powerful facility, though one that most programmers use only rarely. Procedures are
normally used to carry out a given set of operations on different sets of data; but sometimes you
want to carry out the same set of operations on different functional forms. Examples include:
Þnding the gradient of a function, integrating the area under a curve, or simply plotting a graph.
If the curve is speciÞed as a set of data points then you can simply pass over an array, but if it
is speciÞed by means of some algorithm then the procedure which evaluates it can itself be an
actual argument.
In the next example, the subroutine GRAPH plots a graph of a function MYFUNC between

speciÞed limits, with its argument range divided somewhat arbitrarily into 101 points. For
simplicity it assumes the existence of a subroutine PLOT which moves the pen to position
(X,Y). Some other subroutines would, in practice, almost certainly be required.

SUBROUTINE GRAPH(MYFUNC, XMIN, XMAX)

*Plots functional form of MYFUNC(X) with X in range XMIN:XMAX.

REAL MYFUNC, XMIN, XMAX

XDELTA = (XMAX - XMIN) / 100.0

DO 25, I = 0,100

X = XMIN + I * XDELTA

Y = MYFUNC(X)

CALL PLOT(X, Y)

25 CONTINUE

END

The procedure GRAPH can then be used to plot a function simply by providing its name them as
the Þrst argument of the call. The only other requirement is that the name of each function used
as an actual argument in this way must be speciÞed in an INTRINSIC or EXTERNAL statement,
as appropriate. Thus:

PROGRAM CURVES

INTRINSIC SIN, TAN

EXTERNAL MESSY

CALL GRAPH(SIN, 0.0, 3.14159)

CALL GRAPH(TAN, 0.0, 0.5)

CALL GRAPH(MESSY, 0.1, 0.9)

END

REAL FUNCTION MESSY(X)

MESSY = COS(0.1*X) + 0.02 * SIN(SQRT(X))

END

This will Þrst plot a graph of the sine function, then of the tangent function with a different
range, and Þnally produce another plot of the external function called MESSY. These functions
must, of course, have the same procedure interface themselves and must be called correctly in
the GRAPH procedure.
It is possible to pass either a function or a subroutine as an actual argument in this way: the

only difference is that a CALL statement is used instead of a function reference to execute the
dummy procedure. It is possible to pass a procedure through more than one level of procedure
call in the same way. Continuing the last example, another level could be introduced like this:

9 PROCEDURES 76

PROGRAM CURVE2

EXTERNAL MESSY

INTRINSIC SIN, TAN

CALL GRAPH2(PRETTY)

CALL GRAPH2(TAN)

END

SUBROUTINE GRAPH2(PROC)

EXTERNAL PROC

CALL GRAPH(PROC, 0.1, 0.7)

END

Thus the procedure GRAPH2 sets limits to each plot and passes the procedure name on to GRAPH.
The symbolic name PROCmust be declared in an EXTERNAL statement as it is a dummy procedure:
an EXTERNAL statement is required whether the actual procedure at the top level is intrinsic or
external. The syntax of the INTRINSIC and EXTERNAL statements is given in section 9.12 below.
The name of an intrinsic function used as an actual argument must be a speciÞc name and

not a generic one. This is the only circumstance in which you still have to use speciÞc names for
intrinsic functions. A full list of speciÞc names is given in the appendix. A few of the most basic
intrinsic functions which are often expanded to in-line code (those for type conversion, lexical
comparison, as well as MIN and MAX) cannot be passed as actual arguments.

9.8 Subroutine and Call Statements

It is convenient to describe these two statements together as they have to be closely matched in
use. The general form of the SUBROUTINE statement is:

SUBROUTINE name (dummy1, dummy2, ... dummyN)

or
SUBROUTINE name

The second form just indicates that if there are no arguments then the parentheses are optional.
The symbolic name of the subroutine becomes a global name; it must not be used at all within

the program unit and must not be used for any other global item within the entire executable
program.
The dummy arguments are also simply symbolic names. The way in which these are inter-

preted is covered in the next section.
The CALL statement has similar general forms:

CALL name (arg1, arg2, ... argN)

or
CALL name

Again, if there are no arguments the parentheses are optional.
The name must be that of a subroutine (or dummy subroutine). Each arg is an actual

argument which can be a variable, array, substring, array element or any form of expression.
The permitted forms, which depend on the form of the corresponding dummy argument and
how it is used within the subroutine, are fully described in the preceding sections.

9.9 RETURN Statement

The RETURN statement just consists of the keyword
RETURN

9 PROCEDURES 77

Its effect is to stop the procedure executing and to return control, and where appropriate
argument and function values, to the calling program unit. The execution of the END statement
at the end of the program unit has the exactly the same effect, so that RETURN is superßuous
in procedures which have only one entry and one exit point (as all well-designed procedures
should). It is, however, sometimes convenient to use RETURN for an emergency exit. Here is a
somewhat simple-minded example just to illustrate the point:

REAL FUNCTION HYPOT(X, Y)

*Computes the hypotenuse of a right-angled triangle.

REAL X, Y

IF(X .LE. 0.0 .OR. Y .LE. 0.0) THEN

WRITE(UNIT=*,FMT=*)’Warning: impossible values’

HYPOT = 0.0

RETURN

END IF

HYPOT = SQRT(X**2 + Y**2)

END

This function could be used in another program unit like this:

X = HYPOT(12.0, 5.0)

Y = HYPOT(0.0, 5.0)

which would assign to X the value of 13.0000 approximately, while the second function call would
cause a warning message to be issued and would return a value of zero to Y.
In the external function shown above it would have been perfectly possible to avoid having

two exits points by an alternative ending to the procedure, such as:

IF(X .LE. 0.0 .OR. Y .LE. 0.0) THEN

WRITE(UNIT=*,FMT=*)’Warning: impossible values’

HYPOT = 0.0

ELSE

HYPOT = SQRT(X**2 + Y**2)

END IF

END

In more realistic cases, however, the main part of the calculation would be much longer than
just one statement and it might then be easier to understand the working if a RETURN statement
were to be used than with almost all of the procedure contained within an ELSE-block. A third
possibility for emergency exits is to use an unconditional GO TO statement to jump to a label
placed on the END statement.

9.10 FUNCTION Statement

The FUNCTION statement must be the Þrst statement of every external function. Its general form
is:

type FUNCTION(dummy1, dummy2, ... dummyN)

The type speciÞcation is optional: if it is omitted then the type of the result is determined by
the usual rules. The function name may have its type speciÞed by a type or IMPLICIT statement
which appears later in the program unit. If the function is of type character then the length
may be speciÞed by a literal constant (but not a named constant) or may be given in the form

9 PROCEDURES 78

CHARACTER*(*) in which case the length will be passed in as the length declared for the function
name in the calling program unit.
There may be any number of dummy arguments including none, but the parentheses must

still be present. Dummy arguments may, as described in section 9.4, be variables, arrays, or
procedures.
The function name may be used as a variable within the function subprogram unit; a value

must be assigned to this variable before the procedure returns control to the calling unit. If the
function name used the passed-length option then the corresponding variable cannot be used as
an operand of the concatenation operator except in an assignment statement. The passed-length
option is less useful for character functions than for arguments because the length is inevitably
the same for all references from the same program unit. For example:

PROGRAM FLEX

CHARACTER CODE*8, CLASS*6, TITLE*16

CLASS = CODE(’SECRET’)

TITLE = CODE(’ORDER OF BATTLE’)

END

CHARACTER*(*) FUNCTION CODE(WORD)

CHARACTER WORD*(*), BUFFER*80

DO 15, K = 1,LEN(WORD)

BUFFER(K:K) = CHAR(ICHAR(WORD(K:K) + 1)

15 CONTINUE

CODE = BUFFER

END

Unfortunately, although this function can take in an argument of any length up to 80 characters
long and encode it, it can only return a result of exactly 8 characters long when called from the
program FLEX, so that it will not produce the desired result when provided with the longer
character string. This limitation could be overcome with the use of a subroutine with a second
passed-length argument to handle the returned value.
Functions without arguments do not have a wide range of uses but applications for them do

occur up from time to time, for example when generating random numbers or reading values
from an input Þle. For example:

PROGRAM COPY

REAL NEXT

DO 10,I = 1,100

WRITE(UNIT=*,FMT=*) NEXT()

10 CONTINUE

END

REAL FUNCTION NEXT()

READ(UNIT=*,FMT=*) NEXT

END

The parentheses are needed on the function call to distinguish it from a variable. The function
statement itself also has to have the empty pair of parentheses, presumably to match the call.

9 PROCEDURES 79

9.11 SAVE Statement

SAVE is a speciÞcation statement which can be used to ensure that variables and arrays used
within a procedure preserve their values between successive calls to the procedure. Under normal
circumstances local items will become �undeÞned� as soon as the procedure returns control to
the calling unit. It is often useful to store the values of certain items used on one call to avoid
doing extra work on the next. For example:

SUBROUTINE EXTRA(MILES)

INTEGER MILES, LAST

SAVE LAST

DATA LAST /0/

WRITE(UNIT=*, FMT=*) MILES - LAST, ’ more miles.’

LAST = MILES

END

This subroutine simply saves the value of the argument MILES each time and subtracts it from
the next one, so that it can print out the incremental value. The value of LAST had to be given
an initial value using a DATA statement in order to prevent its use with an undeÞned value on
the initial call.
Local variables and arrays and complete named common blocks can be saved using SAVE

statements, but not variables and arrays which are dummy arguments or which appear within
common blocks.
Items which are initially deÞned with a DATA statement but which are never updated with a

new value do not need to be saved.
The SAVE statement has two alternative forms:

SAVE item, item, ... item
SAVE

Where each item can be a local variable or (unsubscripted) array, or the name of a common
block enclosed in slashes. The second form, with no list of items, saves all the allowable items
in the program unit. This form should not be used in any program unit which uses a common
block unless all common blocks used in that program unit are also used in the main program or
saved in every program unit in which it appears. The SAVE statement can be used in the main
program unit (so that it could be packaged with other speciÞcations in an INCLUDE Þle) but has
no effect.
Many current Fortran systems have a simple static storage allocation scheme in which all

variables are saved whether SAVE is used or not. But on small computers which make use of disc
overlays, or large ones with virtual memory systems, this may not be so. You should always
take care to use the SAVE statement anywhere that its use is indicated to make your programs
safe and portable. Even where it is at present strictly redundant it still indicates to the reader
that the procedure works by retaining information from one call to the next, and this is valuable
in itself.

9.12 EXTERNAL and INTRINSIC Statements

The EXTERNAL statement is used to name external procedures which are required in order to
run a given program unit. It may specify the name of any external function or subroutine. It is
required in three rather different circumstances:

� whenever an external procedure or dummy procedure is used as the actual argument of
another procedure call;

10 INPUT/OUTPUT FACILITIES 80

� to call any procedure which has a name duplicating an intrinsic function;
� to ensure that a named block data subprogram is linked into the complete executable
program. This specialised use is covered further in section 12.4.

The INTRINSIC statement is used to declare a name to be that of an intrinsic function. It
is normally necessary only when that function is to be used as the actual argument of another
procedure call, but may also be advisable when calling a non-standard intrinsic function to
remove any ambiguity which might arise if an external function of the same name also existed.
The general form of the two statements is the same:

EXTERNAL ename, ename, ... ename
INTRINSIC iname, iname, ... iname

Where ename can be the name of an external function or subroutine or a dummy procedure;
iname must be speciÞc name of an intrinsic function. For example, to use the real and double
precision versions of the trigonometric functions as actual arguments we need:

INTRINSIC SIN, COS, TAN, DCOS, DSIN, DTAN

When the function name SIN is used as an actual argument it refers to the speciÞc real sine
function; in other contexts it still has its usual generic property. The use of procedures as actual
arguments is covered in detail in section 9.7; a list of speciÞc names of intrinsic functions is given
in the appendix.

10 Input/Output Facilities

The I/O system of Fortran is relatively powerful, ßexible, and well-deÞned. Programs can be
portable and device-independent even if they make extensive use of input/output facilities: this
is difficult if not impossible in many other high-level languages. The effects of the hardware and
operating system cannot, of course, be ignored entirely but they usually only affect fairly minor
matters such as the forms of Þle-name and the maximum record length that can be used.
The READ and WRITE statements are most common and generally look like this:

READ(UNIT=*, FMT=*) NUMBER

WRITE(UNIT=13, ERR=999) NUMBER, ARRAY(1), ARRAY(N)

The pair of parentheses after the word READ or WRITE encloses the control-list: a list of items
which speciÞes where and how the data transfer takes place. The items in this list are usually
speciÞed with keywords. The list of data items to be read or written follow the control-list.
Other input/output statements have a similar form except that they only have a control-list.

There are the Þle-handling statements OPEN, CLOSE, and INQUIRE, as well as the REWIND and
BACKSPACE statements which alter the currently active position within a Þle.
Before covering the these statements in detail, it is necessary to explain some of the concepts

and terminology involved.

10.1 Files, I/O Units, and Records

In Fortran the term Þle is used for anything that can be handled with a READ or WRITE statement:
the term covers not just data Þles stored on disc or tape and also peripheral devices such as
printers or terminals. Strictly these should all be called external Þles, to distinguish them from
internal Þles.
An internal Þle is nothing more than a character variable or array which is used as a temporary

Þle while the program is running. Internal Þles can be used with READ and WRITE statements in

10 INPUT/OUTPUT FACILITIES 81

order to process character information under the control of a format speciÞcation. They cannot
be used by other I/O statements.
Before an external Þle can be used it must be connected to an I/O unit. I/O units are

integers which may be chosen freely from zero up to a system-dependent limit (usually at least
99). Except in OPEN and INQUIRE statements, Þles can only be referred to via their unit numbers.
The OPEN statement connects a named Þle to a numbered unit. It usually speciÞes whether

the Þle already exists or whether a new one is to be created, for example:

OPEN(UNIT=1, FILE=’B:INPUT.DAT’, STATUS=’OLD’)

OPEN(UNIT=9, FILE=’PRINTOUT’, STATUS=’NEW’)

For simplicity most of the examples in this section show an actual integer as the unit identiÞer,
but it helps to make software more modular and adaptable if a named constant or a variable is
used instead.
I/O units are a global resource. A Þle can be opened in any program unit; once it is open

I/O operations can be performed on it in any program unit provided that the same unit number
is used. The unit number can be held in an integer variable and passed to the procedure as an
argument.
The connection between a Þle and a unit, once established, persists until:

� the program terminates normally (at a STOP statement or the END of the main program);

� another OPEN statement connects a different Þle to the same unit;

� or a CLOSE statement is executed on that unit.

Although all Þles are closed when the program exits, it is good practice to close them explicitly
as soon as I/O operations on them are completed. If the program terminates abnormally, for
example because an error occurs or it is aborted by the user, any Þles which are open, especially
output Þles, may be left with incomplete or corrupted records.
The INQUIRE statement can be used to obtain information about the current properties of

external Þles and I/O units. INQUIRE is particularly useful when writing library procedures
which may have to run in a variety of different program environments. You can Þnd out, for
example, which unit numbers are free for use or whether a particular Þle exists and if so what
its characteristics are.

Records

A Þle consists of a sequence of records. In a text Þle a record corresponds to a line of text; in
other cases a record has no physical basis, it is just a convenient collection of values chosen to
suit the application. There is no need for a record to correspond to a disc sector or a tape block.
READ and WRITE statements always start work at the beginning of a record and always transfer
a whole number of records.
The rules of Fortran set no upper limit to the length of a record but, in practice, each

operating system may do so. This may be different for different forms of record.

Formatted and Unformatted Records

External Þles come in two varieties according to whether their records are formatted or unfor-
matted. Formatted records store data in character-coded form, i.e. as lines of text. This makes
them suitable for a wide range of applications since, depending on their contents, they may be

10 INPUT/OUTPUT FACILITIES 82

legible to humans as well as computers. The main complication for the programmer is that
each WRITE or READ statement must specify how each value is to be converted from internal to
external form or vice-versa. This is usually done with a format speciÞcation.
Unformatted records store data in the internal code of the computer so that no format

conversions are involved. This has a several advantages for Þles of numbers, especially ßoating-
point numbers. Unformatted data transfers are simpler to program, faster in execution, and
free from rounding errors. Furthermore the resulting data Þles, sometimes called binary Þles,
are usually much smaller. A real number would, for example, have to be turned into a string of
10 or even 15 characters to preserve its precision on a formatted record, but on an unformatted
record a real number typically occupies only 4 bytes i.e. the same as 4 characters. The drawback
is that unformatted Þles are highly system-speciÞc. They are usually illegible to humans and to
other brands of computer and sometimes incompatible with Þles produced by other programming
languages on the same machine. Unformatted Þles should only be used for information to be
written and read by Fortran programs running on the same type of computer.

Sequential and Direct Access

All peripheral devices allow Þles to be processed sequentially: you start at the beginning of the
Þle and work through each record in turn. One important advantage of sequential Þles is that
different records can have different lengths; the minimum record length is zero but the maximum
is system-dependent.
Sequential Þles behave as if there were a pointer attached to the Þle which always indicates

the next record to be transferred. On devices such as terminals and printers you can only read
or write in strict sequential order, but when a Þle is stored on disc or tape it is possible to use
the REWIND statement to reset this pointer to the start of the Þle, allowing it to be read in again
or re-written. On suitable Þles the BACKSPACE statement can be used to move the pointer back
by one record so that the last record can be read again or over-written.
One unfortunate omission from the Fortran Standard is that the position of the record pointer

is not deÞned when an existing sequential Þle is opened. Most Fortran systems behave sensibly
and make sure that they start at the beginning of the Þle, but there are a few rogue systems
around which make it advisable, in portable software, to use REWIND after the OPEN statement.
Another problem is how append new records to an existing sequential Þle. Some systems provide
(as an extension) an �append� option in the OPEN statement, but the best method using Standard
Fortran is to open the Þle and read records one at a time until the end-of-Þle condition is
encountered; then use BACKSPACE to move the pointer back and clear the end-of-Þle condition.
New records can then be added in the usual way.
The alternative access method is direct-access which allows records to be read and written

in any order. Most systems only permit this for Þles stored on random-access devices such as
discs; it is sometimes also permitted on tapes. All records in a direct-access Þle must be the
same length so that the system can compute the location of a record from its record number.
The record length has to be chosen when the Þle is created and (on most systems) is then Þxed
for the life of the Þle. In Fortran, direct-access records are numbered from one upwards; each
READ or WRITE statement speciÞes the record number at which the transfer starts.
Records may be written to a direct-access Þle in any order. Any record can be read provided

that it exists, i.e. it has been written at some time since the Þle was created. Once a record has
been written there is no way of deleting it, but its contents can be updated, i.e. replaced, at any
time.
A few primitive operating systems require the maximum length of a direct-access Þle to be

10 INPUT/OUTPUT FACILITIES 83

speciÞed when the Þle is created; this is not necessary in systems which comply fully with the
Fortran Standard.

10.2 External Files

Formatted and unformatted records cannot be mixed on the same Þle and on most systems Þles
designed for sequential-access are quite distinct from those created for direct-access: thus there
are four different types of external Þle. There is no special support in Standard Fortran for any
other types of Þle such as indexed-sequential Þles or name-list Þles.

Formatted Sequential Files

These are often just called text Þles. Terminals and printers should always be treated as for-
matted sequential Þles. Data Þles of this type can be created in a variety of ways, for example
by direct entry from the keyboard, or by using a text editor. Some Fortran systems do not allow
records to be longer than a normal line of text, for example 132 characters. Unless a text Þle is
pre-connected it must be opened with an OPEN statement, but the FORM= and ACCESS= keywords
are not needed as the default values are suitable:

OPEN(UNIT=4, FILE=’REPORT’, STATUS=’NEW’)

All data transfers must be carried out under format control. There are two options with Þles of
this type: you can either provide your own format speciÞcation or use list-directed formatting.
The attraction of list-directed I/O is that the Fortran system does the work, providing simple

data transfers with little programming effort. They are speciÞed by having an asterisk as the
format identiÞer:

WRITE(UNIT=*, FMT=*)’Enter velocity: ’

READ(UNIT=*, FMT=*, END=999) SPEED

List-directed input is quite convenient when reading numbers from a terminal since it allows
virtually �free-format� data entry. It may also be useful when reading data Þles where the
layout is not regular enough to be handled by a format speciÞcation. List-directed output
is satisfactory when used just to output a character string (as in the example above), but it
produces less pleasing results when used to output numerical values since you have no control over
the positioning of items on the line, the Þeld-width, or the number of decimal digits displayed.
Thus:

WRITE(UNIT=LP, FMT=*)’ Box of’,N,’ costs ’,PRICE

will produce a record something like this:
Box of 12 costs 9.5000000

List-directed output is best avoided except to write simple messages and for diagnostic output
during program development. The rules for list-directed formatting are covered in detail in
section 10.10.
The alternative is to provide a format speciÞcation: this provides complete control over the

data transfer. The previous example can be modiÞed to use a format speciÞcation like this:

WRITE(UNIT=LP, FMT=55)’Box of’,N,’ costs ’,PRICE

55 FORMAT(1X, A, I3, A, F6.2)

and will produce a record like this:
Box of 12 costs 9.50

10 INPUT/OUTPUT FACILITIES 84

The format speciÞcation is provided in this case by a FORMAT statement: its label is the format
identiÞer in the WRITE statement. Other ways of providing format speciÞcations are described
in section 10.6.
One unusual feature of input under control of a format speciÞcation is that each line of text

will appear to be padded out on the right with an indeÞnite number of blanks irrespective of
the actual length of the data record. This means that, among other things, it is not possible to
distinguish between an empty record and one Þlled with blanks. If numbers are read from an
empty record they will simply be zero.

Unformatted Sequential Files

Unformatted sequential Þles are often used as to transfer data from one program to another.
They are also suitable for scratch Þles, i.e. those used temporarily during program execution.
The only limit on the length of unformatted records is that set by the operating system; most
systems allow records to contain a few thousand data items at least. The OPEN statement must
specify the Þle format, but the default access method is �sequential�. Each READ or WRITE

statement transfers one unformatted record.
For example, these statements open an existing unformatted Þle and read two records from

it:

OPEN(UNIT=15, FILE=’BIN’, STATUS=’OLD’, FORM=’UNFORMATTED’)

READ(15) HEIGHT, LENGTH, WIDTH

READ(15) ARRAYP, ARRAYQ

BACKSPACE and REWIND statements may generally be used on all unformatted sequential Þles.

Unformatted Direct-access Files

Since direct-access Þles are readable only by machine, it seems sensible to use unformatted
records to maximise efficiency. The OPEN statement must specify ACCESS=’DIRECT’ and also
specify the record length. Unfortunately the units used to measure the length of a record are
not standardised: some systems measure them in bytes, others in numerical storage units, i.e.
the number of real or integer variables a record can hold (see section 5.1). This is a minor
obstacle to portability and means that you may need to know how many bytes your machine
uses for each numerical storage unit, although this is just about the only place in Fortran where
this is necessary. Most systems will allow you to open an existing Þle only if the record length
is the same as that used when the Þle was created.
Each READ and WRITE statement transfers exactly one record and must specify the number

of that record: an integer value from one upwards. The record length must not be greater than
that declared in the OPEN statement; if an output record is not completely Þlled the remainder
is undeÞned.
To illustrate how direct-access Þles can be used, here is a complete program which allows a

very simple data-base, such as a set of stock records, to be examined. Assuming that the record
length is measured in numerical storage units of 4 bytes, the required record length in this case
can be computed as follows:

NAME 1 CHARACTER*10 variable 10 chars = 10 bytes.
STOCK 1 INTEGER variable 1 unit = 4 bytes
PRICE 1 REAL variable 1 unit = 4 bytes

10 INPUT/OUTPUT FACILITIES 85

The total record length is 18 bytes or 5 numerical storage units (rounding up to the next
integer).

PROGRAM DBASE1

INTEGER STOCK, NERR

REAL PRICE

CHARACTER NAME*10

*Assume record length in storage units holding 4 chars each.

OPEN(UNIT=1, FILE=’STOCKS’, STATUS=’OLD’,

$ ACCESS=’DIRECT’, RECL=5)

100 CONTINUE

*Ask user for part number which will be used as record number.

WRITE(UNIT=*,FMT=*)’Enter part number (or zero to quit):’

READ(UNIT=*,FMT=*) NPART

IF(NPART .LE. 0) STOP

READ(UNIT=1, REC=NPART, IOSTAT=NERR) NAME, STOCK, PRICE

IF(NERR .NE. 0) THEN

WRITE(UNIT=*,FMT=*)’Unknown part number, re-enter’

GO TO 100

END IF

WRITE(*,115)STOCK, NAME, PRICE

115 FORMAT(1X,’Stock is’,I4, 1X, A,’ at ’, F8.2, ’ each’)

GO TO 100

END

The typical output record of the program will be of the form:
Stock is 123 widgets at 556.89 each

This program could be extended fairly easily to allow the contents of the record to be updated
as the stock changes.

Formatted Direct-access Files

Formatted direct-access Þles are slightly more portable than the unformatted form because their
record length is always measured in characters. Otherwise there is little to be said for them. The
OPEN statement must specify both ACCESS=’DIRECT’ and FORM=’FORMATTED’ and each READ and
WRITE statement must contain both format and record-number identiÞers. List-directed transfers
are not permitted. If the format speciÞcation requires more than one record to be used, these
additional records follow on sequentially from that speciÞed by REC=. It is an error to try
to read beyond the end of a record, but an incompletely Þlled record will be padded out with
blanks.

10.3 Internal Files

An internal Þle is an area of central memory which can be used as if it were a formatted sequential
Þle. It exists, of course, only while the program is executing. Internal Þles are used for a variety
of purposes, particularly to carry out data conversions to and from character data type. Some
earlier versions of Fortran included ENCODE and DECODE statements: the internal Þle READ (which
replaces DECODE) and internal Þle WRITE (which replaces ENCODE) are simpler, more ßexible, and
entirely portable.

10 INPUT/OUTPUT FACILITIES 86

An internal Þle can only be used with READ and WRITE statements and an explicit format
speciÞcation is required: list-directed transfers are not permitted. The unit must have character
data type but it can be a variable, array element, substring, or a complete array. If it is a
complete array then each array element constitutes a record; in all other cases the Þle only
consists of one record. Data transfers always start at the beginning of the internal Þle, that is
an implicit rewind is performed each time. The record length is the length of the character item.
It is illegal to try to transfer more characters than the internal Þle contains, but if a record of too
few characters is written it will be padded out with blanks. The END= and IOSTAT= mechanisms
can be used to detect the end-of-Þle.
An internal Þle WRITE is typically used to convert a numerical value to a character string by

using a suitable format speciÞcation, for example:

CHARACTER*8 CVAL

RVALUE = 98.6

WRITE(CVAL, ’(SP, F7.2)’) RVALUE

The WRITE statement will Þll the character variable CVAL with the characters ’ +98.60 ’ (note
that there is one blank at each end of the number, the Þrst because the number is right-justiÞed
in the Þeld of 7 characters, the second because the record is padded out to the declared length
of 8 characters).
Once a number has been turned into a character-string it can be processed further in the

various ways described in section 7. This makes it possible, for example, to write numbers
left-justiÞed in a Þeld, or mark negative numbers with �DR� (as in bank statements) in or even
use a pair of parentheses (as in balance-sheets). With suitable arithmetic you can even output
values in other number-bases such as octal or hexadecimal. Even more elaborate conversions
may be achieved by Þrst writing a suitable format speciÞcation into a character string and then
using that format to carry out the desired conversion.
Internal Þle READ statements can be used to decode a character string containing a numerical

value. One obvious application is to handle the user input to a command-driven program.
Suppose the command line consists of a word followed, optionally, by a number (in integer or
real format), with at least one blank separating the two. Thus the input commands might be
something like:

UP 4

RIGHT 123.45

A simple way to deal with this is to read the whole line into a character variable and then use
the INDEX function to locate the Þrst blank. The preceding characters constitute the command
word, those following can be converted to a real number using an internal Þle READ. For example:

CHARACTER CLINE*80

* . . .

100 WRITE(UNIT=*,FMT=*)’Enter command: ’

READ(*, ’(A)’, IOSTAT=KODE) CLINE

IF(KODE .NE. 0) STOP

K = INDEX(CLINE, ’ ’)

*The command word is now in CLINE(1:K-1); Assume the

* number is in the next 20 characters: read it into RVALUE

READ(CLINE(K+1:), ’(BN,F20.0)’, IOSTAT=KODE)

RVALUE

10 INPUT/OUTPUT FACILITIES 87

IF(KODE .NE. 0) THEN

WRITE(UNIT=*,FMT=*)’Error in number: try again’

GO TO 100

END IF

Note that the edit descriptor BN is needed to ensure that any trailing blanks will be ignored; the
F20.0 will then handle any real or integer constant anywhere in the next 20 characters. A Þeld
of blanks will be converted into zero.

10.4 Pre-Connected Files

Terminal Input/Output

Many programs are interactive and need to access the user�s terminal. Although the terminal is
a Þle which can be connected with an OPEN statement, its name is system-dependent. Fortran
solves the problem by providing two special Þles usually called the standard input Þle and
the standard output Þle. These Þles are pre-connected, i.e. no OPEN statement is needed (or
permitted). They are both formatted sequential Þles and, on interactive systems, handle input
and output to the terminal. You can READ and WRITE from these Þles simply by having an
asterisk �*� as the unit identiÞer. These Þles make terminal I/O simple and portable; examples
of their use can be found throughout this book.
When a program is run in batch mode most systems arrange for standard output to be

diverted to a log Þle or to the system printer. There may be some similar arrangement for the
standard input Þle.
The asterisk notation has one slight drawback: the unit numbers is often speciÞed by an

integer variable so that the source of input or destination of output can be switched from one
Þle to another merely be altering the value of this integer. This cannot be done with the standard
input or output Þles.

Other Pre-connected Files

In order to retain compatibility with Fortran66, many systems provide other pre-connected Þles.
It used to be customary to have unit 5 connected to the card-reader, and unit 6 to the line
printer. Other units were usually connected to disc Þles with appropriate names: thus unit
39 might be connected to a Þle called FTN039.DAT or even TAPE39. These pre-connections are
completely obsolete and should be ignored: an OPEN statement can supersede a pre-connection
on any numbered unit. Unfortunately these obsolete pre-connections can have unexpected side
effects. If you forget to open an output Þle you may Þnd that your program will run without
error but that the results will be hidden on a Þle with one of these special names.

10.5 Error and End-Of-File Conditions

Errors in most executable statements can be prevented by taking sufficient care in writing
the program, but in I/O statements errors can be caused by events beyond the control of the
programmer: for example through trying to open a Þle which no longer exists, writing to a
disc which is full, or reading a data Þle which has been created with the wrong format. Since
I/O statements are so vulnerable, Fortran provides an error-handling mechanism for them.
There are actually two different ways of handling errors which may be used independently or in
combination.

10 INPUT/OUTPUT FACILITIES 88

Firstly, you can include in the I/O control list an item of the form:
IOSTAT=integer-variable

When the statement has executed the integer variable (or array element) will be assigned a
value representing the I/O status. If the statement has completed successfully this variable is
set to zero, otherwise it is set to some other value, a positive number if an error has occurred,
or a negative value if the end of an input Þle was detected. Since the value of this status code
is system-dependent, in portable software the most you can do is to compare it to zero and,
possibly, report the actual error code to the user. Thus:

100 WRITE(UNIT=*, FMT=*)’Enter name of input file: ’

READ(UNIT=*, FMT=*) FNAME

OPEN(UNIT=INPUT, FILE=FNAME, STATUS=’OLD’, IOSTAT=KODE)

IF(KODE .NE. 0) THEN

WRITE(UNIT=*,FMT=*)FNAME, ’ cannot be opened’

GO TO 100

END IF

This simple error-handling scheme makes the program just a little more user-friendly: if the Þle
cannot be opened, perhaps because it does not exist, the program asks for another Þle-name.
The second method is to include an item of the form

ERR=label

which causes control to be transferred to the statement attached to that label in the event of
an error. This must, of course, be an executable statement and in the same program unit. For
example:

READ(UNIT=IN, FMT=*, ERR=999) VOLTS, AMPS

WATTS = VOLTS * AMPS

* rest of program in here and finally

STOP

999 WRITE(UNIT=*,FMT=*)’Error reading VOLTS or AMPS’

END

This method has its uses but is open to the same objections as the GO TO statement: it often
leads to badly-structured programs with lots of arbitrary jumps.
By using both IOSTAT= and ERR= in the same statement it is possible to Þnd out the actual

error number and jump to the error-handling code. The presence of either keyword in an I/O
statement will allow the program to continue after an I/O error; on most systems it also prevents
an error message being issued.
The ERR= and IOSTAT= items can be used in all I/O statements. Professional programmers

should make extensive use of these error-handling mechanisms to enhance the robustness and
user-friendliness of their software.
There is one fairly common mistake which does not count as an errors for this purpose: if

you write a number to a formatted record using a Þeld width too narrow to contain it, the Þeld
will simply be Þlled with asterisks.
If an error occurs in a data transfer statement then the position of the Þle becomes inde-

terminate. It may be quite difficult to locate the offending record if an error is detected when
transferring a large array or using a large number of records.

10 INPUT/OUTPUT FACILITIES 89

End-of-Þle Detection

A READ statement which tries to read a record beyond the end of a sequential or internal Þle will
trigger the end-of-Þle condition. If an item of the form: IOSTAT=integer-variable is included
in its control-list then the status value will be returned as some negative number. If it includes
an item of the form: END=label then control is transferred to the labelled statement when the
end-of-Þle condition is detected.
The END= keyword may only be used in READ statements, but it is can be used in the presence

of both ERR= and IOSTAT= keywords. End-of-Þle detection is very useful when reading a Þle of
unknown length, but some caution is necessary. If you read several records at a time from a
formatted Þle there is no easy way of knowing exactly where the end-of-Þle condition occurred.
The data list items beyond that point will have their values unaltered. Note also that there is
no concept of end-of-Þle on direct-access Þles: it is simply an error to read a record which does
not exist, whether it is beyond the �end� of the Þle or not.
Most systems provide some method for signalling end-of-Þle on terminal input: those based

on the ASCII code often use the character ETX which is usually produced by pressing control/Z
on the keyboard (or EOT which is control/D). After an end-of-Þle condition has been raised in
this way it may persist, preventing further terminal input to that program.
Formally, the Fortran Standard only requires Fortran systems to detect the end-of-Þle condi-

tion on external Þles if there is a special �end-Þle� record on the end. The END FILE statement
is provided speciÞcally to write such a record. In practice, however, virtually all Fortran systems
respond perfectly well when you try to read the Þrst non-existent record, so that the END FILE

statement is effectively obsolete and is not recommended for general use.

10.6 Format Specifications

Every READ or WRITE statement which uses a formatted external Þle or an internal Þle must
include a format identiÞer. This may have any of the following forms:

FMT=* This speciÞes a list-directed transfer (and is only permitted for external sequential Þles).
Detailed rules are given in section 10.10 below.

FMT=label The label must be attached to a FORMAT statement in the same program unit which
provides the format speciÞcation.

FMT=char-exp The value of the character expression is a complete format speciÞcation.

FMT=char-array The elements of the character array contain the format speciÞcation, which may
occupy as many elements of the array as are necessary.

Note that the characters FMT= may be omitted if it is the second item in the I/O control list
and if the unit identiÞer with UNIT= omitted comes Þrst.
A format speciÞcation consists a pair of parentheses enclosing a list of items called edit

descriptors. Any blanks before the left parenthesis will be ignored and (except in a FORMAT
statement) all characters after the matching right parenthesis are ignored.
In most cases the format can be chosen when the program is written and the simplest option

is to use a character constant:
WRITE(UNIT=LP, FMT=’(1X,A,F10.5)’) ’Frequency =’, HERTZ

Alternatively you can use a FORMAT statement:

WRITE(UNIT=LP, FMT=915) ’Frequency =’, HERTZ

915 FORMAT(1X, A, F10.5)

10 INPUT/OUTPUT FACILITIES 90

This allows the same format to be used by more than one data-transfer statement. The FORMAT

statement may also be the neater form if the speciÞcation is long and complicated, or if character-
constant descriptors are involved, since the enclosing apostrophes have to be doubled up if the
whole format is part of another character constant.
It is also possible to compute a format speciÞcation at run-time by using a suitable character

expression. By this means you could, for example, arrange to read the format speciÞcation of
a data Þle from the Þrst record of the Þle. The program fragment below shows how to output
a real number in Þxed-point format (F10.2) when it is small, changing to exponential format
(E18.6) when it is larger. A threshold of a million has been chosen here.

CHARACTER F1*(*), F2*12, F3*(*)

*Items F1, F2, F3 hold the three parts of a format specification.

*F1 and F3 are constants, F2 is a variable.

PARAMETER (F1 = ’(1X,’’Peak size =’’,’)

PARAMETER (F3 = ’)’)

*... calculation of PEAK assumed to be in here

IF(PEAK .LT. 1.0E6) THEN

F2 = ’F10.2’

ELSE

F2 = ’E18.6’

END IF

WRITE(UNIT=*, FMT=F1//F2//F3) PEAK

Note that the apostrophes surrounding the character constant ’Peak size =’ have been dou-
bled in the PARAMETER statement because they are inside another character constant. Here are
two examples of output records, with blanks shown explicitly:

PeakÃsizeÃ=ÃÃ12345.67

PeakÃsizeÃ=ÃÃÃÃÃÃ0.987654E+08

FORMAT statement

The FORMAT statement is classed as non-executable and can, in principle, go almost anywhere
in the program unit. A FORMAT statement can, of course, be continued so its maximum length
is 20 lines. The same FORMAT statement can be used by more than one data transfer statement
and, unless it contains character constant descriptors, used for both input and output. Since
it is very easy to make a mistake in matching the items in a data transfer list with the edit
descriptors in the format speciÞcation, it makes sense to put the FORMAT statement as close as
possible to the READ and WRITE statements which use it.

10.7 Format Edit Descriptors

There are two types of edit descriptor: data descriptors and control descriptors.
A data descriptor must be provided for each data item transferred by a READ or WRITE

statement; the descriptors permitted depend on the data type of the item. The data descriptors
all start with a letter indicating the data type followed by an unsigned integer denoting the Þeld
width, for example: I5 denotes an integer Þeld 5 characters wide, F9.2 denotes a ßoating-point
Þeld 9 character wide with 2 digits after the decimal point. Full details of all the data descriptors
are given in the next section.

10 INPUT/OUTPUT FACILITIES 91

The control descriptors are used for a variety of purposes, such as tabbing to speciÞc columns,
producing or skipping records, and controlling the transfer of subsequent numerical data. They
are described fully in section 10.9.
Note that only literal constants are permitted within format speciÞcations, not named con-

stants or variables.

10.8 Format Data Descriptors A, E, F, G, I, L

A data descriptor must be provided for each data item present (or implied) in a data transfer
list. Real, double precision, and complex items may use any of the E, F, or G descriptors but
in all other cases the data type must match. Two ßoating-point descriptors are needed for each
complex value.

Data type Data descriptors

Integer Iw, Iw.m

Real, Double Precision, or Complex Ew.d, Ew.dEe, Fw.d, Gw.d, Gw.dEe

Logical Lw

Character A, Aw

The letters w, m, d, and e used with these data descriptors represent unsigned integer con-
stants; w and e must be greater than zero.

w is the total Þeld width.
m is the minimum number of digits produced on output.
d is the number of digits after the decimal point.
e is the number of digits used for the exponent.

Any data descriptor can be preceded by a repeat-count (also an unsigned integer), thus:
3F6.0 is equivalent to F6.0,F6.0,F6.0

This facility is particularly useful when handling arrays.

General Rules for Numeric Input/Output

Numbers are always converted using the decimal number base: there is no provision in Standard
Fortran for transfers in other number bases such as octal or hexadecimal. More complicated
conversions such as these can be performed with the aid of internal Þles.
On output number are generally right-justiÞed in the speciÞed Þeld; leading blanks are sup-

plied where necessary. Negative values are always preceded by a minus sign (for which space
must be allowed in the Þeld); zero is always unsigned; the SP and SS descriptors control whether
positive numbers are to be preceded by a plus sign or not. A number which is too large to Þt
into its Þeld will appear instead as a set of w asterisks.
On input numbers should be right-justiÞed in each Þeld. All forms of constant permitted in

a Fortran program can safely be used in an input Þeld of the corresponding type, as long there
are no embedded or trailing blanks. Leading blanks are always ignored; a Þeld which is entirely
blank will be read as zero. The treatment of embedded and trailing blanks can be controlled
with the BN and BZ descriptors. The rules here are another relic of very early Fortran systems.
When reading a Þle which has been connected by means of an OPEN statement (provided

it does not contain BLANK=’ZERO’) all embedded and trailing blanks in numeric input Þelds
are treated as nulls, i.e. they are ignored. In all other cases, such as input from the standard
pre-connected Þle or from an internal Þle, embedded and trailing blanks are treated as zeros.

10 INPUT/OUTPUT FACILITIES 92

These defaults can be altered with the BN and BZ control descriptors. It is hard to imagine any
circumstances in which it is desirable to interpret embedded blanks as zeros; the default settings
are particularly ill-chosen since numbers entered by a user at a terminal are often left-justiÞed
and may appear to be padded out with zeros. Errors from this source can be avoided by using
BN at the beginning of all input format speciÞcations.

Integer Data (Iw, Iw.m)

An integer value written with Iw appears right-justiÞed in a Þeld of w characters with leading
blanks. Iw.m is similar but ensures that at least m digits will appear even if leading zeros are
necessary. This is useful, for instance, to output the times in hours and minutes:

NHOURS = 8

MINUTE = 6

WRITE(UNIT=*, FMT=’(I4.2, I2.2)’) NHOURS, MINUTE

The output record (with blanks shown explicitly) is:

ÃÃ0806

On input Iw and Iw.m are identical. Note that an integer Þeld must not contain a decimal point,
exponent, or any punctuation characters such as commas.

Floating Point Data (Ew.d, Ew.dEe, Fw.d, Gw.d, Gw.dEe)

Data of any of the ßoating-point types (Real, Double Precision, and Complex) may be transferred
using any of the descriptors E, F, or G. For each complex number two descriptors must be
provided, one for each component; these components may be separated, if required, by control
descriptors. On output numbers are rounded to the speciÞed number of digits. All ßoating-
point data transfers are affected by the setting of the scale-factor; this is initially zero but can
be altered by the P control descriptor, as explained in the section 10.9.
Output using Fw.d produces a Þxed-point value in a Þeld of w characters with exactly d

digits after the decimal point. The decimal point is present even if w is zero, so that if a sign
is produced there is only space for, at most, w-2 digits before the decimal point. If it is really
important to suppress the decimal point in numbers with no fractional part one way is to use a
format speciÞcation of the form (F15.0,TL1)... so that the next Þeld starts one place to the left
and over-writes the decimal point. Another way is to copy the number to an integer variable and
write it with an I descriptor, but note the limited range of integers on most systems. F format
is especially convenient in tabular layouts since the decimal points will line up in successive
records, but it is not suitable for very large or small numbers.
Output with Ew.d produces a number in exponential or �scientiÞc� notation. The mantissa

will be between 0.1 and 1 (if the scale-factor is zero). The form Ew.dEe speciÞes that there should
be exactly e digits in the exponent. This form must be used if the exponent will have more
than three digits (although this problem does not arise on machines on which the number range
is too small). E format can be used to handle numbers of any magnitude. The disadvantage is
that exceptionally large or small values do not stand out very well in the resulting columns of
Þgures.

Gw.d is the general-purpose descriptor: if the value is greater than 0.1 but not too large to Þt
it the Þeld it will be written using a Þxed-point format with d digits in total and with 4 blanks
at the end of the Þeld; otherwise it is equivalent to Ew.d format. The form Gw.dEe allows you

10 INPUT/OUTPUT FACILITIES 93

to specify the length of the exponent; if a Þxed-point format is chosen there are e+2 blanks at
the end.
The next example shows the different properties of these three formats on output:

X = 123.456789

Y = 0.09876543

WRITE(UNIT=*, FMT=’(E12.5, F12.5, G12.5)’) X,X,X, Y,Y,Y

produces two records (with t representing the blank):
Ã0.12346E+03ÃÃÃ123.45679ÃÃ123.46

Ã0.98766E-01ÃÃÃÃÃ0.09877Ã0.98766E-01

On input all the E, F, and G descriptors have identical effects: if the input Þeld contains an
explicit decimal point it always takes precedence, otherwise the last d digits are taken as the
decimal fraction. If an exponent is used it may be preceded by E or D (but the exponent letter
is optional if the exponent is signed). If the input Þeld provides more digits than the internal
storage can utilise, the extra precision is ignored. It is usually best to use (Fw.0) which will
cope with all common ßoating-point or even integer forms.

Logical Data (Lw)

When a logical value is written with Lw the Þeld will contain the letter T or F preceded by
(w-1) blanks. On input the Þeld must contain the letter T or F; the letter may be preceded by
a decimal point and any number of blanks. Characters after the T or F are ignored. Thus the
forms .TRUE. and .FALSE. are acceptable.

Character Data (A and Aw)

If the A descriptor is used without an explicit Þeld-width then the length of the character item in
the data-transfer list determines it. This is generally what is required but note that the position
of the remaining items in the record will change if the length of the character item is altered.
If is important to use Þxed column layouts the form Aw may be preferred: it always uses a Þeld

w characters wide. On output if the actual length len is less than w the value is right-justiÞed
in the Þeld and preceded by (w-len) blanks; otherwise only the Þrst w characters are output,
the rest are ignored. On input if the length len is less than w then the right-most len characters
are used, otherwise w characters will be read into the character variable with (len-w) blanks
appended.

10.9 Format Control Descriptors

Control descriptors do not correspond to any item in the data-transfer list: they are obeyed
when the format scan reaches that point in the list. A format speciÞcation consisting of nothing
but control descriptors is valid only if the READ or WRITE statement has an empty data-transfer
list.

10 INPUT/OUTPUT FACILITIES 94

Control Function Control Descriptor

Skip to next record /

Move to speciÞed column position Tn, TLn, TRn, nX

Output a character constant ’any char string’

Stop format scan if data list empty :

Control + before positive numbers SP, SS, S

Treat blanks as nulls/zeros BN, BZ

Set scale factor for numeric transfers kP

Here n and k are integer constants, k may have a sign but n must be non-zero and unsigned.
The control descriptors such as SP, BN, kP affect all numbers transferred subsequently. The
settings are unaffected by forced reversion but the system defaults are restored at the start of
the next READ or WRITE operation.
Any list of edit descriptors may be enclosed in parentheses and preceded by an integer constant

as a repetition count, e.g.
2(I2.2, ’-’),I2.2

is equivalent to
I2.2, ’-’, I2.2, ’-’, I2.2

These sub-lists can be nested to any reasonable depth, but the presence of internal pairs of
parentheses can have special effects when forced reversion takes place, as explained later.
Commas may be omitted between items in the following special cases: either side of a slash

(/) or colon (:) descriptor, and after a scale-factor (kP) if it immediately precedes a D, E, F,

or G descriptor.

Record Control (/)

The slash descriptor (/) starts a new record on output or skips to a new record on input, ignoring
anything left on the current record. On a text Þle a record normally corresponds to a line of
text. Note that a formatted transfer always process at least one record: if the format contains
N slashes then a total of (N+1) records are processed. With N consecutive slashes in an output
format there will be (N-1) blank lines; on input then (N-1) lines will be ignored. Note that if
a formatted sequential Þle is sent to a printer the Þrst character of every record may be used
for carriage-control (see section 10.11). It is good practice to put 1X at the beginning of every
format speciÞcation and after every slash to ensure single line spacing. Here, for example, there
is a blank line after the column headings.

WRITE(UNIT=LP, FMT=95) (NYEAR(I), POP(I), I=1,NYEARS)

95 FORMAT(1X,’Year Population’, //, 100(1X, I4, F12.0, /))

Column Position Control (Tn, TLn, TRn, nX)

These descriptors cause subsequent values to be transferred starting at a different column posi-
tion in the record. They can, for instance, be used to set up a table with headings positioned
over each column. In all these descriptors the value of n must be 1 or more. Columns are
numbered from 1 on the left (but remember that column 1 may be used for carriage-control if
the output is sent to a printer).

10 INPUT/OUTPUT FACILITIES 95

Tn causes subsequent output to start at column n.
TRn causes a shift to the right by n columns.
TLn causes a shift to the left by n columns (but it will not move the position to

the left of column 1).
nX is exactly equivalent to TRn.

On input TLn can be used to re-read the same Þeld again, possibly using a different data
descriptor. On output these descriptors do not necessarily have any direct effect on the record:
they do not cause any existing characters to be replaced by blanks, but when the record is
complete any column positions embedded in the record which are still unset will be replaced by
blanks. Thus:

WRITE(UNIT=LP, FMT=9000)

9000 FORMAT(’A’, TR1000, TL950, ’Z’)

will cause a record of 52 characters to be output, middle 50 of them blanks.

Character Constant Output (’string’)

The character constant descriptor can only be used with WRITE statements: the character string
is simply copied to the output record. As in all character constants an apostrophe can be
represented in the string by two successive apostrophes, and blanks are signiÞcant.

Sign Control (SP, SS, S)

After SP has been used, positive numbers will be written with a leading + sign; after SS has
been used the + sign is suppressed. The S descriptor restores the initial default which is system-
dependent. These descriptors have no effect on numerical input. The initial default is restored
at the start of every new formatted transfer.

Blank Control (BN, BZ)

After BN is used all embedded and trailing blanks in numerical input Þelds are treated as nulls,
i.e. ignored. After BZ they are treated as zeros. These descriptors have no effect on numerical
output. The initial default, which depends on the BLANK= item in the OPEN statement, is restored
at the start of every new formatted transfer.

Scale Factor Control (kP)

The scale factor can be used to introduce a scaling by any power of 10 between internal and
external values when E, F, or G descriptors are used. In principle this could be useful when
dealing with data which are too large, or too small, for the exponent range of the ßoating-point
data types of the machine, but in other difficulties usually make this impracticable. The scale
factor can result in particularly insidious errors when used with F descriptors and should be
avoided by all sensible programmers. The rules are as follows.
The initial scale factor in each formatted transfer is zero. It the descriptor kP is used, where

k is a small (optionally signed) integer, then it is set to k. It affects all subsequent ßoating point
values transferred by the statement. On input there is no effect if the input Þeld contains an
explicit exponent, otherwise

internal-value = external-value / 10k

On output the effect depends on the descriptor used. With E descriptors the decimal point is

10 INPUT/OUTPUT FACILITIES 96

moved k places to the right and the exponent reduced by k so the effective value is unaltered.
With F descriptors there is always a scaling:

external-value = em internal-value * 10k

With G descriptors the scale-factor is ignored if the value is in the range for F-type output,
otherwise it has the same effects as with E descriptors.

Scan Control (:) and Forced Reversion

The list of edit descriptors is scanned from left to right (apart from the effect of parentheses)
starting at the beginning of the list whenever a new data transfer statement is executed. The
action of the I/O system depends jointly on the next edit descriptor and the next item in data-
transfer list. If a data descriptor comes next then the next data item is transferred if one exists,
otherwise the format scan comes to an end. If a colon descriptor (:) comes next and the data-
transfer list is empty the format scan ends, otherwise the descriptor has no effect. If any other
control descriptor comes next then it is obeyed whether or not the data-transfer list is empty.
If the format list is exhausted when there are still more items in the data-transfer list then

forced reversion occurs: the Þle is positioned at the beginning of the next record and the for-
mat list is scanned again, starting at the left-parenthesis matching the last preceding right-
parenthesis. If this is preceded by a repeat-count then this count is re-used. If there is no
preceding right-parenthesis then the whole format is re-used. Forced reversion has no effect
upon the settings for scale-factor, sign, or blank control. Forced reversion can be useful when
reading or writing an array contained on a sequence of records since it is not necessary to know
how many records there are in total, but when producing printed output it is easy to forget that
a carriage-control character is required for each record, even those produced by forced reversion.

10.10 List-Directed Formatting

List-directed output uses a format chosen by the system according to the data type of the item.
The exact layout is system-dependent, but the general rules are as follows.

List-directed Output

Each WRITE statement starts a new record; additional records are produced when necessary.
Each record starts with a single blank to provide carriage-control on printing. Arithmetic data
types are converted to decimal values with the number of digits appropriate for the internal
precision; integer values will not have a decimal point, the system may choose Þxed-point or
exponential (scientiÞc) form for ßoating-point values depending on their magnitude. Complex
values are enclosed in parentheses with a comma separating the two parts.
Logical values are output as a single letter, either T or F. Character values are output without

enclosing apostrophes; if a character string is too long for one record it may be continued on the
next. Except for character values, each item is followed by at least one blank or a comma (or
both) to separate it from the next value.

List-directed Input

The rules for List-directed input effectively allow free-format entry for numerical data. Each
READ statement starts with a new record and reads as many records as are necessary to satisfy its
data-transfer list. The input records must contain a suitable sequence of values and separators.

10 INPUT/OUTPUT FACILITIES 97

The values may be given in any form which would be acceptable in a Fortran program
for a constant of the corresponding type, except that embedded blanks are only permitted in
character values. When reading a real or double-precision value an integer constant will be
accepted; when reading a logical value only the letter T or F is required (a preceding dot and
any following characters will be ignored). Note that a character constant must be enclosed in
apostrophes and a complex constant must be enclosed in parentheses with a comma between
the two components. If a character constant is too long to Þt on one record it may be continued
on to the next; the two parts of a complex constant may also be given on two records.
The separator between successive values must be one or more blanks, or a comma, or both.

A new record may start at any point at which a blank would be permitted.
If several successive items are to have the same value a repetition factor can be used: this

has the form n*constant where n is an unsigned integer. Blanks are not allowed either side of
the asterisk.
Two successive commas represent a null value: the corresponding variable in the READ state-

ment has its value unchanged. It is also possible to use the form n* to represent a set of n null
values.
A slash (/) may be used instead of an item separator; it has the effect of completing the

current READ without further input; all remaining items in its data transfer list are unchanged
in value.
List-directed output Þles are generally compatible with list-directed input, unless they contain

character items, which will not have the enclosing apostrophes which are required on input.

10.11 Carriage-Control and Printing

Although a format speciÞcation allows complete control over the layout of each line of text, it
does not include any way of controlling pagination. The only way to do this is by using a unique
and extraordinary mechanism dating back to the earliest days of Fortran. Even if you are not
concerned with pagination you still need to know about the carriage-control convention since it
is liable to affect every text Þle you produce.
Whenever formatted output is sent to a �printer�, the Þrst character of every record is

removed and used to control the vertical spacing. This carriage-control character must be one
of the four listed in the the table below.

Character Vertical spacing before printing

blank Advance to next line
0 Advance two lines
1 Advance to top of next page
+ No advance, i.e. print on same line

An empty record is treated as if it started with a single blank. For example, these statements
start a new page with a page number at the top and a title on the third line:

WRITE(LP, 55) NUMBER, ’Report and Accounts’

55 FORMAT(’1PAGE’, I4, /, ’0’, A)

This carriage-control convention is an absurd relic which causes a multitude of problems in
practice. Firstly, systems differ on what they call a �printer�: it may or may not apply to visual
display terminals or to text initially saved on a disc Þle and later printed out. Some operating
systems have a special Þle type for Fortran formatted output which is treated differently by

10 INPUT/OUTPUT FACILITIES 98

printers (and terminals). Others have been known to chop off the Þrst character of all Þles sent
to the system printer so that special utilities are needed to print ordinary text.
To be on the safe side you should always provide an explicit carriage-control character at the

start of each format speciÞcation and after each slash. Special care is needed in formats which
use forced reversion. Normal single spacing is obtained with a blank, conveniently produced by
the 1X edit descriptor. If you forget and accidentally print a number at the start of each record
with a leading digit 1 then each record will start a new page.
The effect of + as a carriage-control character would be more useful if its effects were more

predictable. Some devices over-print the previous record (allowing the formation of composite
characters like), others append to it, and some (including many visual display terminals) erase
what was there before. In portable software there is no alternative but to ignore the + case
altogether.
Standard Fortran can only use the four carriage-control characters listed in the table but

many systems use other symbols for special formatting purposes, such as setting vertical spacing,
changing fonts, and so on. One extension which is widely available is the use of the currency
symbol $ to suppress carriage-return at the end of the line. This can be useful when producing
terminal prompts as it allows the reply to be entered on the same line. There is, unfortunately,
no way of doing this in Standard Fortran.
The rules for list-directed output ensure that the lines are single-spaced by requiring at least

one blank at the start of every record.

10.12 Input/Output Statements and Keywords

The I/O statements fall into three groups:

� The data transfer statements READ and WRITE.

� The Þle connection statements OPEN, CLOSE, and INQUIRE.

� The Þle positioning statements REWIND and BACKSPACE.

All these statements have a similar general form (except that only the READ and WRITE

statements can have a data-transfer list):
READ(control-list) input-list
WRITE(control-list) output-list

The items in each list are separated by commas. Those in the control list are usually speciÞed
by keywords, in which case the order does not matter, although it is conventional to have the
unit identiÞer Þrst. For compatibility with Fortran66, if the unit identiÞer does come Þrst then
the keyword UNIT= may be omitted. Furthermore, when this keyword is omitted in READ and
WRITE statements and the format identiÞer is second its keyword may also be omitted. Thus
these two statements are exactly equivalent:

READ(UNIT=1, FMT=*, ERR=999) AMPS, VOLTS, HERTZ

READ(1, *, ERR=999) AMPS, VOLTS, HERTZ

Use of this abbreviated form is a matter of taste: for the sake of clarity the keywords will all be
shown in other examples.
Many of the keywords in the control-list can take a character expression as an argument: in

such cases any trailing blanks in the value will be ignored. This makes it easy to use character
variables to specify Þle names and characteristics.

10 INPUT/OUTPUT FACILITIES 99

There is one general restriction on expressions used in all I/O statements: they must not call
external functions which themselves execute further I/O statements. This restriction avoids the
possibility of recursive calls to the I/O system.

10.13 OPEN Statement

The OPEN statement is used to connect a Þle to an I/O unit and describe its characteristics. It
can open an existing Þle or create a new one. If the unit is already connected to another Þle
then this is closed before the new connection is made, so that it is impossible to connect two
Þles simultaneously to the same unit. It is an error to try to connect more than one unit simul-
taneously to the same Þle. In the special case in which the unit and Þle are already connected to
each other, the OPEN statement may be used to alter the properties of the connection, although
in practice only the BLANK= (and sometimes RECL=) values can be changed in this way.
The Fortran Standard does not specify the Þle position when an existing sequential Þle

is opened. Although most operating systems behave sensibly, in portable software a REWIND

statement should be used to ensure that the Þle is rewound before you read it.
The general form of the OPEN statement is just:

OPEN(control-list)

The control-list can contain any of the following items in any order:

UNIT=integer-expression species the I/O unit number which must be zero or above; the upper
limit is system-dependent, typically 99 or 255. The unit identiÞer must always be given,
there is no default value.

STATUS=character-expression describes or speciÞes the Þle status. The value must be one of:

’OLD’ The Þle must exist.
’NEW’ The Þle must not already exist, a new Þle is created.
’SCRATCH’ An unnamed temporary Þle is created; it is deleted automatically

when the program exits.
’UNKNOWN’ The effect is system-dependent, but usually means that an old Þle

will be used if one exists, otherwise a new Þle will be created.

The default value is ’UNKNOWN’, but it is unwise to omit the STATUS keyword because the
effect of ’UNKNOWN’ is so ill-deÞned.

FILE=character-expression speciÞes the Þle-name (but any trailing blanks will be ignored). The
forms of Þle-name acceptable are system-dependent: a complete Þle-speciÞcation on some
operating systems may include the device, user-name, directory path, Þle-type, version
number etc. and may require various punctuation marks to separate these. In portable
software, where the name has to be acceptable to a variety of operating systems, short
and simple names should be used. Alternatively the FILE= identiÞer may be a character
variable (or array element) so that the user can choose a Þle-name at run-time. There is no
default for the Þle-name so one should be speciÞed in all cases unless STATUS=’SCRATCH’

in which case the Þle must not be named.

ACCESS=character-expression speciÞes the Þle access method. The value may be either:

’SEQUENTIAL’ a sequential Þle: this is the default.
’DIRECT’ a direct-access Þle: in this case the RECL= keyword is also needed.

FORM=character-expression speciÞes the record format. The value may be either:

10 INPUT/OUTPUT FACILITIES 100

’FORMATTED’ the default for a sequential Þle.
’UNFORMATTED’ the default for a direct-access Þle.

RECL=integer-expression speciÞes the record length. This must be given for a direct-access Þle
but not otherwise. The record-length is measured in characters for a formatted Þle, but is
in system-dependent units (often numeric storage units) for an unformatted Þle.

BLANK=character-expression speciÞes how embedded and trailing blanks in numerical input
Þelds of formatted Þles are to be treated (in the absence of explicit format descriptors BN

or BZ). The value may be either:

’NULL’ blanks treated as nulls, i.e. ignored: the default.
’ZERO’ blanks treated as zeros.

The default value is likely to be the sensible choice in all cases.

IOSTAT=integer-variable (or array element) returns the I/O status code after execution of the
OPEN statement. This will be zero if no error has occurred, otherwise it will return a
system-dependent positive value.

ERR=label transfers control to the labelled executable statement in the same program unit in
the event of an error.

10.14 CLOSE Statement

The CLOSE statement is used to close a Þle and break its connection to a unit. The unit and the
Þle (if it still exists) are then free for re-use in any way. If the speciÞed unit is not connected to
a Þle the statement has no effect. The general form of the statement is:

CLOSE(control-list)

where the control-list may contain the following items:

UNIT=integer-expression speciÞes the unit number to close (the same as in the OPEN statement).

STATUS=character-expression speciÞes the status of the Þle after closure. The expression must
have a value of either: ’KEEP’ for the Þle to be preserved, or ’DELETE’ for the Þle
to be deleted after closure. The default is STATUS=’KEEP’ except for Þles opened with
STATUS=’SCRATCH’: such Þles are always deleted after closure and STATUS=’KEEP’ is not
permitted.

IOSTAT=integer-variable and ERR=label are both permitted, as in the OPEN statement (but not
much can go wrong with a CLOSE statement).

10.15 INQUIRE Statement

The INQUIRE statement can be used in two slightly different forms:
INQUIRE(UNIT= integer-expression, inquire-list)

INQUIRE(FILE= em character-expression, inquire-list)

The Þrst form, an inquire by unit, returns information about the unit and, if it is connected to
a Þle, about the Þle as well. If it is not connected to a Þle then most of the arguments will be
undeÞned or return a value of ’UNKNOWN’ as appropriate.
The second form, inquire by Þle, can always be used to Þnd out whether a named Þle exists,

i.e. can be opened by a Fortran program. Any trailing blanks in the character expression are

10 INPUT/OUTPUT FACILITIES 101

ignored, and the forms of Þle-name acceptable are, as in the OPEN statement, system-dependent.
If the Þle exists and is connected to a unit then much more information can be obtained.
The inquire-list may contain any of the items below. Note that all of them (except for

ERR=label) return information by assigning a value to a named variable (or array element).
The normal rules of assignment statements apply, so that so that character items may have any
reasonable length will return a value which is padded out with blanks to its declared length if
necessary.

IOSTAT=integer-variable and ERR=label can both be used in the same way as in OPEN or CLOSE;
note that they detect errors during the execution of the INQUIRE statement itself, and do
not reßect the state of the Þle or unit which is the subject of the inquiry.

EXIST=logical-variable sets the variable (or array-element) to .TRUE. if the speciÞed unit or Þle
exists, or .FALSE. if it does not. A unit exists if it has a number in the permitted range.
A Þle exists if it can be used in an OPEN statement. A Þle may appear not to exist merely
because the operating system prevents its use, for example because a password is needed
or because some other user has already opened it.

OPENED=logical-variable sets the variable to .TRUE. if the speciÞed unit (or Þle) is currently
connected to a Þle (or unit) in the program.

NUMBER=integer-variable returns the unit number of a Þle which is connected to the variable;
otherwise it becomes undeÞned.

NAME=character-variable returns the Þle-name to the variable if the Þle has a name; if not it
becomes undeÞned. In the case of an inquire by Þle the name may not be the same as that
speciÞed using FILE= (because a device-name or directory path may have been added) but
the name returned will always be suitable for use in an OPEN statement.

ACCESS=character-variable returns the record access-method, either ’SEQUENTIAL’ or ’DIRECT’

if the Þle is connected; if it is not connected the variable becomes undeÞned.

SEQUENTIAL=character-variable returns ’YES’ if the Þle can be opened for sequential access,
’NO’ if it cannot, and ’UNKNOWN’ otherwise.

DIRECT=character-variable returns ’YES’ if the Þle can be opened for direct access, ’NO’ if it
cannot, and ’UNKNOWN’ otherwise.

FORM=character-variable returns ’FORMATTED’ if the Þle is connected for formatted access,
’UNFORMATTED’ if it is connected for unformatted access, or becomes undeÞned if there is
no connection.

FORMATTED=character-variable returns ’YES’ if formatted access is permitted, ’NO’ if it is not,
or ’UNKNOWN’ otherwise.

UNFORMATTED=character-variable returns ’YES’ if unformatted access is permitted, ’NO’ if it is
not, or ’UNKNOWN’ otherwise.

RECL=integer-variable returns the record length if the Þle is connected for direct-access but
becomes undeÞned otherwise. Note that the units are characters for formatted Þles, but
are system-dependent for unformatted Þles.

10 INPUT/OUTPUT FACILITIES 102

NEXTREC=integer-variable returns a number which is one higher than the last record read or
written if the Þle is connected for direct access. If it is connected for direct access but
no records have been transferred, the variable returns one. If the Þle is not connected for
direct access the variable becomes undeÞned.

BLANK=character-variable returns ’NULL’ or ’BLANK’ if the Þle is connected for formatted access
according to the way embedded and trailing blanks are to be treated. In other cases it
becomes undeÞned.

10.16 READ and WRITE Statements

The READ statement reads information from one or more records on a Þle into a list of variables,
array elements, etc. The WRITE statement writes information from a list of items which may
include variables, arrays, and expressions and produces one or more records on a Þle. Each READ

or WRITE statement can only transfer one record on an unformatted Þle but on formatted Þles,
including internal Þles, more than one record may be transferred, depending on the contents of
the format speciÞcation.
The two statements have the same general form:

READ(control-list) data-list
WRITE(control-list) data-list

The control-list must contain a unit identiÞer; the other items may be optional depending on
the type of Þle. The data-list is also optional: if it is absent the statement transfers one record
(or possibly more under the control of a format speciÞcation).

Unit IdentiÞer

This may have any of the following forms:

UNIT= integer-expression The value of the expression must be zero or greater and must refer to
a valid I/O unit.

UNIT=* For the standard pre-connected input or output Þle.

UNIT=internal-file The internal-Þle may be a variable, array-element, substring, or array of type
character, see section 10.3.

Note that the keyword UNIT= is optional if the unit identiÞer is the Þrst item in the control
list.

Format IdentiÞer

A format identiÞer must be provided when using a formatted (or internal) Þle but not otherwise.
It may have any of the following forms:

FMT=label The label of a FORMAT statement in the same program unit.

FMT=format The format may be a character expression or character array containing a complete
format speciÞcation (section 10.6).

FMT=* For list-directed formatting (section 10.10).

Note that the keyword FMT= is also optional if the format identiÞer is the second item in the
control list and the Þrst item is a unit identiÞer speciÞed without its keyword.

10 INPUT/OUTPUT FACILITIES 103

Record Number

A record number identiÞer must be provided for direct-access Þles but not otherwise. It has the
form:

REC=integer-expression
The record number must be greater than zero; for READ it must refer to a record which exists.

Error and End-of-Þle IdentiÞers

These may be provided in any combination, but END=label is only valid when reading a sequential
or internal Þle. See 10.5 for more information.

END=label

ERR=label

IOSTAT=integer-variable

The data list of a READ statement may contain variables, array-elements, character-substrings,
or complete arrays of any data type. An array-name without subscripts represents all the
elements of the array; this is not permitted for assumed-size dummy arguments in procedures
(because the array size is indeterminate). The list may also contain implied DO-loops (explained
below).
The data list of a WRITE statement may contain any of the items permitted in a READ statement

and in addition expressions of any data type. As in all I/O statements, expressions must not
themselves involve the execution of other I/O statements.

Implied DO-loops

The simplest and most efficient way to read or write all the elements of an array is to put its
name, unsubscripted, in the data-transfer list. In the case of a multi-dimensional array the
elements will be transferred in the normal storage sequence, with the Þrst subscript varying
most rapidly.
An implied-DO loop allows the elements to be transferred selectively or in some non-standard

order. The rules for an implied-DO are similar to that of an ordinary DO-loop but the loop forms
a single item in the data-transfer list and is enclosed by a pair of parentheses rather than by DO

and CONTINUE statements. For example:

READ(UNIT=*, FMT=*) (ARRAY(I), I= IMIN, IMAX)

WRITE(UNIT=*, FMT=15) (M, X(M), Y(M), M=1,101,5)

15 FORMAT(1X, I6, 2F12.3)

Amulti-dimensional array can be printed out in a transposed form. The next example outputs
an array X(100,5) but with 5 elements across and 100 lines vertically:

WRITE(UNIT=*, FMT=5) (I,I=1,5),

$ ((L,X(L,I),I=1,5),L=1,100)

5 FORMAT(1X,’LINE’, 5I10, 100(/,1X,I4, 5F10.2))

The Þrst loop writes headings for the Þve columns, then the double loop writes a line-number
for each line followed by Þve array elements. Note that the parentheses have to be matched and
that a comma is needed after the inner right-parenthesis since the inner loop is just an item in
the list contained in the outer loop.

11 DATA STATEMENT 104

The implied DO-loop has the general form:
(data-list, loop-variable = start, limit, step)

where the rules for the start, limit, and step values are exactly as in an ordinary DO statement.
The loop-variable (normally an integer) may be used within the data-list and this list may, in
turn, include further complete implied-DO lists.
If an error or end-of-Þle condition occurs in an implied DO-loop then the loop-control variable

will be undeÞned on exit; this means that an explicit DO-loop is required to read an indeÞnite
list of data records and exit with knowledge of how many items were actually input.

10.17 REWIND and BACKSPACE Statements

These Þle-positioning statements may only be used on external sequential Þles; most systems
will restrict them to Þles stored on suitable peripheral devices such as discs or tapes.

REWIND repositions a Þle to the beginning of information so that the next READ statement will
read the Þrst record; if a WRITE statement is used after REWIND all existing records on the Þle
are destroyed. REWIND has no effect if the Þle is already rewound. If a REWIND statement is used
on a unit which is connected but does not exist (e.g. a pre-connected output Þle) it creates the
Þle.

BACKSPACE moves the Þle position back by one record so that the record can be re-read or
over-written. There is no effect if the Þle is already positioned at the beginning of information
but it is an error to back-space a Þle which does not exist. It is also illegal to back-space over
records written by list-directed formatting (because the number of records produced each time
is system-dependent). A few operating systems Þnd it difficult to implement the BACKSPACE

statement directly and actually manage it only by rewinding the Þle and spacing forward to the
appropriate record. It is sometimes possible to avoid backspacing a Þle by allocating buffers
within the program and, for a formatted Þle, using an internal Þle READ and WRITE statements.
These statements have similar general forms:

REWIND(control-list)

BACKSPACE(control-list)

where the control-list may contain:

UNIT=integer-expression

IOSTAT=integer-variable

ERR=label

The unit identiÞer is compulsory, the others optional. If only the unit identiÞer is used then (for
compatibility with Fortran66) an abbreviated form of the statement is permitted:

REWIND integer-expression
BACKSPACE integer-expression

where the integer expression identiÞes the unit number.

11 DATA Statement

The DATA statement is used to specify initial values for variables and array elements. The DATA

statement is non-executable, but in a main program unit it has the same effect as a set of
assignment statements at the very beginning of the program. Thus in a main program a DATA

statement like this:

DATA LINES/625/, FREQ/50.0/, NAME/’PAL’/

11 DATA STATEMENT 105

could replace several assignment statements:

LINES = 625

FREQ = 50.0

NAME = ’PAL’

This is more convenient, especially when initialising arrays, and efficient, since the work is
done when the program is loaded.
In a procedure, however, these two methods are not equivalent, especially in the case of items

which are modiÞed as the procedure executes. A DATA statement only sets the values once at the
start of execution, whereas assignment statements will do so every time the procedure is called.
It is important to distinguish between the DATA and PARAMETER statements. The DATA state-

ment merely speciÞes an initial value for a variable (or array) which may be altered during the
course of execution. The PARAMETER statement speciÞes values for constants which cannot be
changed without recompiling the program. If, however, you need an array of constants, for which
there is no direct support in Fortran, you should use an ordinary array with a DATA statement
to initialise its elements (and take care not to corrupt the contents afterwards).

11.1 Defined and Undefined Values

The value of each variable and array element is undeÞned at the start of execution unless it has
been initialised with a DATA statement. An undeÞned value may only be used in executable
statements in ways which cause it to become deÞned. An item can become deÞned by its use in
any of the following ways:

� on the left-hand side of an assignment statement,
� as the control variable of a DO statement,

� in the input list of a READ statement,

� as the internal Þle identiÞer of a WRITE statement,

� as the I/O status identiÞer in an I/O statement,
� in an INQUIRE statement except as Þle or unit number,

� in a procedure call provided that the corresponding dummy argument is deÞned before
the procedure returns control.

An undeÞned variable must not be used in any other way. Errors caused by the inadvertent
use of undeÞned values are easy to make and sometimes have very obscure effects. It is important,
therefore, to identify every item which needs to be initialised and provide a suitable set of DATA

statements.
Modern operating systems often clear the area of memory into which they load a program

to prevent unauthorized access to the data used in the preceding job. A few operating systems
preset their memory to a bit-pattern which corresponds to an illegal numerical value: this is
a very helpful diagnostic facility since whenever an undeÞned variable is used in an expression
it generates an error at run time. Other systems merely set their memory to zero: this makes
it more difficult to track down the use of undeÞned variables and they may only come to light
when a program is transported to another system. To rely on undeÞned variables and arrays
having an initial value of zero is to leave the program completely at the mercy of changes to the
operating system.

11 DATA STATEMENT 106

11.2 Initialising Variables

The simplest form of the DATA statement consists of a list of the variable names each followed
by a constant enclosed in a pair of slashes:

DOUBLE PRECISION EPOCH

LOGICAL OPENED

CHARACTER INFILE*20

DATA EPOCH/1950.0D0/, OPENED/.TRUE./, INFILE/’B:OBS.DAT’/

Note that DATA statements must follow all speciÞcation statements. An alternative form is
to give a complete list of names can be given Þrst and followed by a separate list of constants:

DATA EPOCH, OPENED, INFILE / 1950.0D0, .TRUE., ’B:OBS.DAT’/

When there are many items to be initialised it is a matter of taste whether to use several
DATA statements or to use one with many continuation lines. It is, of course, illegal to have the
same name appearing twice.
Character variables can be initialised in sections using the substring notation if this is more

convenient:

CHARACTER*52 LETTER

DATA LETTER(1:26)/’ABCDEFGHIJKLMNOPQRSTUVWXYZ’/,

$ LETTER(27:) /’abcdefghijklmnopqrstuvwxyz’/

If the length of the character constant differs from that of the variable then the string is
truncated or padded with blanks as in an assignment statement. The type conversion rules of
assignment statements also apply to arithmetic items in DATA statements.

11.3 Initialising Arrays

There are several ways of using DATA statements to initialise arrays, all of them simpler and
more efficient than the equivalent set of DO-loops. Perhaps the most common requirement is to
initialise all the elements of an array: in this case the array name can appear without subscripts.
If several of the elements are to have the same initial value a repeat count can be precede any
constant:

REAL FLUX(1000)

DATA FLUX / 512*0.0, 488*-1.0 /

The total number of constants must equal the number of array elements. The constants
correspond to the elements in the array in the normal storage sequence, that is with the Þrst
subscript varying most rapidly.
Named constants are permitted, but not constant expressions. The repeat count may be a

literal or named integer constant. To initialise a multi-dimensional array with parameterised
array bounds it is necessary to deÞne another integer constant to hold the total number of
elements:

PARAMETER (NX = 800, NY = 360, NTOTAL = NX * NY)

DOUBLE PRECISION SCREEN(NX,NY), ZERO

PARAMETER (ZERO = 0.0D0)

DATA SCREEN / NTOTAL * ZERO /

11 DATA STATEMENT 107

If only a few array elements are to be initialised they can be listed individually:

REAL SPARSE(50,50)

DATA SPARSE(1,1), SPARSE(50,50) / 1.0, 99.99999 /

The third, and most complicated, option is to use an implied-DO loop. This operates in
much the same way as an implied-DO in an I/O statement:

INTEGER ODD(10)

DATA (ODD(I),I=1,10,2)/ 5 * 43/

DATA (ODD(I),I=2,10,2)/ 5 * 0 /

This example has initialised all the odd numbered elements to one value and all the even
numbered elements to another. Note that the loop control variable (I in this example) has
a scope which does not extend outside the section of the DATA statement in which it is used.
Any integer variable may be used as a loop control index in a DATA statement without effects
elsewhere; the value of I itself is not deÞned by these statements.
When initialising part of a multi-dimensional array it may occasionally be useful to nest

DO-loops like this:

DOUBLE PRECISION FIELD(5,5)

DATA ((FIELD(I,J),I=1,J), J=1,5) / 15 * -1.0D0 /

This speciÞes initial values only for the upper triangle of the square array FIELD.

11.4 DATA Statements in Procedures

In procedures, DATA statements perform a role for which assignment statements are no substitute.
It is quite often necessary to arrange for some action to be carried out at the start of the Þrst call
but not subsequently, such as opening a Þle or initialising a variable or array which accumulates
information during subsequent calls.
If information is preserved in a local variable or array from one invocation to another a SAVE

statement (described in section 9.11) is also needed. Indeed, in general any object initialised in
a DATA statement in a procedure also needs to be named in a SAVE statement unless its value is
never altered.
In the next example the procedure opens a data Þle on its Þrst call, using a logical variable

OPENED to remember the state of the Þle.

SUBROUTINE LOOKUP(INDEX, RECORD)

INTEGER INDEX

REAL RECORD

LOGICAL OPENED

SAVE OPENED

DATA OPENED / .FALSE. /

*On first call OPENED is false so open the file.

IF(.NOT. OPENED) THEN

OPEN(UNIT=57, FILE=’HIDDEN.DAT’, STATUS=’OLD’,

$ ACCESS=’DIRECT’, RECL=100)

OPENED = .TRUE.

END IF

READ(UNIT=57, REC=INDEX) RECORD

END

12 COMMON BLOCKS 108

Here, for simplicity, the I/O unit number is a literal constant. The procedure would be more
modular if the unit number were also an argument of the procedure or if it contained some code,
using the INQUIRE statement, to determine for itself a suitable unused unit number.
There is, of course, no corresponding way to determine which is the last call to the procedure

so that the Þle can be closed, but this is not strictly necessary as the Fortran system closes all
Þles automatically when the program exits.
Note that DATA statements cannot be used to initialise variables or arrays which are dummy

arguments of a procedure, nor the variable which has the same name as the function.

11.5 General Rules

The general form of the DATA statement is:
DATA nlist / clist /, nlist / clist /, ...

Where nlist is a list of variable names, array names, substring names, and implied-DO lists, and
clist is a list of items which may be literal or named constants or either of these preceded by
a repeat-count and an asterisk. The repeat-count can also be an unsigned integer constant or
named constant.
The comma which precedes each list of names except the Þrst is optional. An implied-DO

list has the general form:
(dlist, intvar = start, limit, step)

Where em dlist is a list of implied-DO lists and array elements; intvar is an integer variable
called the loop-control variable; start, limit, and step are integer expressions in which all the
operands must be integer constants or loop-control variables of outer implied-DO lists.

DATA statements cannot be used to initialise items in the blank common block; items in named
common blocks can only be initialised within a BLOCK DATA program unit (see section 12.4).
The DATA statements in each program unit must follow all speciÞcation statements but they

can be interspersed with executable statements and statement function statements. It is, how-
ever, best to follow the usual practice of putting all DATA statements before any of the exe-
cutable statements.

12 Common Blocks

A common block is a list of variables and arrays stored in a named area which may be accessed
directly in more than one program unit. Common blocks are mainly used to transfer information
from one program unit to another; they can be used in as an alternative to argument-list transfers
or in addition to them.
Common blocks are sometimes used to Þt large programs into small computers by arranging

for several program units to share a common pool of memory. This is not a recommended
programming practice and is likely to become redundant with the spread of virtual-memory
operating systems.
The name of a common block is an external name which must be different from all other

global names, such as those of procedures, in the executable program. The variables and arrays
stored with the block cannot be initialised in the normal way, but only in a BLOCK DATA program
unit which was invented especially for this purpose.

12 COMMON BLOCKS 109

12.1 Using Common Blocks

In most cases the best way to pass information from one program unit to another is to use
the procedure argument list mechanism. This preserves the modularity and independence of
procedures as much as possible. Argument lists are, however, less satisfactory in a group of
procedures forming a package which have to share a large amount of information with each
other. Procedure argument lists then tend to be come long, cumbersome, and even inefficient.
If this package of procedures is intended for general use it is quite important to keep the external
interface as uncomplicated as possible. This can be achieved by using the procedure argument
lists only for import of information from and export to the rest of the program, and handling
the communications between one procedure in the package and another with common blocks.
The user is then free to ignore the internal workings of the package.
For example, in a simple package to handle a pen-plotter you may want to provide simple

procedure calls such as:

CALL PLOPEN Initialise the plotting device
CALL SCALE(F) Set the scaling factor to F.
CALL MOVE(X,Y) Move the pen to position (X,Y)
CALL DRAW(X,Y) Draw a line from the last pen position to (X,Y).

These procedures clearly have to pass information from one to another about the current pen
position, scaling factor, etc. A suitable common block deÞnition might look like this:

COMMON /PLOT/ OPENED, ORIGIN(2), PSCALE, NUMPEN

LOGICAL OPENED

INTEGER NUMPEN

REAL PSCALE, ORIGIN

SAVE /PLOT/

These speciÞcation statements would be needed in each procedure in the package.

Common Block Names

A program unit can access the contents of any common block by quoting its name in a COMMON

statement. Common block names are always enclosed in a pair of slashes and can only be used in
COMMON and SAVE statements. The common block itself has no data type and has a global name
which must be distinct from the names of all program units. The name should also be distinct
from all local names in each program units which access the block. Each program unit can
make use of any number of different common blocks. There is also a special blank or un-named
common block with unique properties which are covered in section 12.2 below.
The variables and arrays within a common block do not have any global status: they are

associated with items in blocks bearing the same name in other program units only by their
position within the block. Thus, if in one program unit speciÞes:

COMMON /OBTUSE/ X(3)

and in another:

COMMON /OBTUSE/ A, B, C

then, assuming the data types are the same, X(1) corresponds to A, X(2) to B, and X(3) to
C. The COMMON statements here are effectively setting up different names or aliases for the same

12 COMMON BLOCKS 110

set of memory locations. The data types do not have to match provided the overall length is the
same, but it is generally only possible to transfer information from one program unit to another if
the corresponding items have the same data type. If they do not, when one item becomes deÞned
all names for the same location which have a different data type become undeÞned. There is
one minor exception to this rule: information may be transferred from a complex variable (or
array element) to two variables of type real (or vice-versa) since these are directly associated
with its real and imaginary parts.
Usually it is necessary to arrange for corresponding items to have identical data types; it also

minimises confusion if the same symbolic names are used as well. The simplest way to achieve
this is to use an INCLUDE statement, if your system provides one. The include-Þle should contain
not only the COMMON statement but also all the associated type and SAVE statements which are
necessary. It is, of course, still necessary to recompile every program unit which accesses the
common block whenever its deÞnition is altered signiÞcantly.

Declaring Arrays

The bounds of an array can be declared in the COMMON statement itself, or in a separate type or
DIMENSION statement, but only in one of them. Thus:

COMMON /DEMO/ ARRAY(5000)

DOUBLE PRECISION ARRAY

is exactly equivalent to:

COMMON /DEMO/ ARRAY

DOUBLE PRECISION ARRAY(5000)

or even:

COMMON /DEMO/ ARRAY

DOUBLE PRECISION ARRAY

DIMENSION ARRAY(5000)

but the verbosity of the third form has little to recommend it.

Data Types

The normal data type rules apply to variables and arrays in each common block. A type
statement is not required if the initial letter rule would have the required effect, but type
statements are advisable, especially if the implied-type rules are anywhere affected by IMPLICIT

statements. Type statements may precede or follow the COMMON statement. Similarly the lengths
of character items should be speciÞed in a separate type statement: these cannot be speciÞed
in the COMMON statement.

Storage Units

The length of each common block is measured in storage units, as described in section 5.1.
In summary, integer, real, and logical items occupy one numeric storage unit each; complex
and double precision items occupy two each. To maximise portability, character storage units
are considered incommensurate with numerical storage units. For this reason character and
non-character items cannot be mixed in the same common block.

12 COMMON BLOCKS 111

In practice this often means that two common blocks are needed to hold a particular data
structure: one for the character items and one for all the others. If, in the Þrst example, it
had been necessary for the plotting package to store a plot title this would have to appear in a
separate common block such as:

COMMON /PLOTC/ TITLE

CHARACTER TITLE*40

SAVE /PLOTC/

It is good practice to use related names for the blocks to indicate that the character and
non-character items are used in conjunction.
The length of a named common block must be the same in each program unit in which it

appears. Obviously the easiest way to ensure this is to make the common block contents identical
in each program unit. Note, however, that there is no requirement for data types to match, or
for them to be listed in any particular order, provided the items are not used for information
transfer, and provided the total length of the block is the same in each case. Thus these common
blocks are both 2000 numerical storage units in length:

COMMON /SAME/ G(1000)

DOUBLE PRECISION G

COMMON /SAME/ A, B, C, R(1997)

REAL A, R

LOGICAL B

INTEGER C

Items in a common block are stored in consecutive memory locations. Unfortunately there a
few computer systems which require double precision and complex items to be stored in even-
numbered storage locations: these may Þnd it hard to cope with blocks which contain a mixture
of data types. Machines with this defect can nearly always be placated by arranging for all
double precision and complex items to come at the beginning of each block.

SAVE Statements and Common Blocks

Items in common blocks may become undeÞned when a procedure returns control to the calling
unit just like local variables and arrays. This will not, however, occur in the case of the blank
common block nor in any common block which is also declared in a program unit which is higher
up the current chain of procedure calls. Since the main program unit is always at the top of the
chain any common block declared in the main program can never become undeÞned in this way.
In all other cases it is prudent to use SAVE statements.
The individual items in common blocks cannot be speciÞed in a SAVE statement, only the

common block name itself. Thus:

SAVE /SAME/, /DEMO/

If a common block is saved in any program unit then it must be saved in all of them. The
SAVE statement ought therefore to be included with the COMMON and associated type statements
if INCLUDE statements are used. If the program is later modiÞed so that the common block is
also declared in the main program this will bring a SAVE statement into the main program unit,
but although it then has no effect, it does no harm.

12 COMMON BLOCKS 112

Restrictions

The dummy arguments of a procedure cannot be members of a common block nor, in a function,
can the variable which has same name as the function. There are also some restrictions on the
use of common block items as actual arguments of procedure calls because of the possibility of
multiple deÞnition. For example, if a procedure is deÞned like this:

SUBROUTINE SILLY(ARG)

COMMON /BLOCK/ COM

And the same common block is also used in the calling unit, with a common block item as
the actual argument, such as:

PROGRAM DUMMY

COMMON /BLOCK/ VALUE

*...

CALL SILLY(VALUE)

Then both ARG and COM within the subroutine SILLY are associated with the same item,
VALUE, and it is therefore illegal to assign a new value to either of them.

12.2 Blank Common Blocks

Common blocks are sometimes also used to reduce the total amount of memory used by a
program by arranging for several program units to share the same set of memory locations.
This is a difficult and risky procedure which should not be attempted unless all else fails.
Most Fortran systems operate a storage allocation system which is completely static: each

program unit has a separate allocation of memory for its local variables and arrays. If several
procedures each need to use large arrays internally the total amount of memory occupied by
the program may be rather large. If a set of procedures can be identiÞed which are invoked
in sequence, rather than one calling another, it may be feasible to reduce the total memory
allocation by arranging for them to share a storage area. Each will use the same common block
for their internal array space.
Named common blocks are required to have the same length in each program unit: if they

are used it is necessary to work out which one needs the most storage and pad out all the others
to same length. An alternative is to the use the special blank (or un-named) common block
which has the useful property that it may have a different length in different program units.
In one program unit, for example, you could specify:

COMMON // DUMMY(10000)

and in another

COMPLEX SERIES(512,512), SLICE(512), EXPECT(1024)

COMMON // SERIES, SLICE, EXPECT

The blank common block has two other special properties. Firstly it cannot be initialised by
a DATA statement even within a BLOCK DATA program unit (but this is not a serious limitation
for a block used just for scratch storage). Secondly items within the blank common block never
become undeÞned as a result of a procedure exit. For this reason the blank common block
cannot be speciÞed in a SAVE statement.

12 COMMON BLOCKS 113

12.3 COMMON Statement

A program unit may contain any number of COMMON statements, each of which can deÞne contents
for any number of different common blocks. COMMON statements are speciÞcation statements and
have a general form:

COMMON / name/ list-of-items , / name / list-of-items ...
Each name is deÞned as a common block name, which has global scope. The Fortran Standard

allows it to use the same name as an intrinsic function, a local variable, or local array but not
that of a named constant or an intrinsic function. Each list of items can contain names of
variables and arrays. The array name may be followed by a dimension speciÞcation provided
that each array is only dimensioned once in each program unit. The comma shown before the
second and subsequent block-name is optional.
The name of the blank common block is normally speciÞed as two consecutive slashes (ignor-

ing any intervening blanks) but if it is the Þrst block in the statement then the pair of slashes
may be omitted.
The contents of a common block are a concatenation of the all the deÞnitions for it in the

program unit. Thus:

COMMON /ONE/ A, B, C, /TWO/ ALPHA, BETA, GAMMA

COMMON /TWO/ DELTA

deÞnes two blocks, /ONE/ contains three items while /TWO/ contains four of them.
In procedures, variables which are dummy arguments or which are the same as the function

name cannot appear in common blocks.

12.4 BLOCK DATA Program Units

The block data program unit is a special form of program unit which is required only if it
is necessary to specify initial values for variables and arrays in named common blocks. The
program unit starts with a BLOCK DATA statement, ends with an END statement, and contains
only speciÞcation and DATA statements. Comment lines are also permitted. The block data
program unit is not executable and it is not a procedure.
The next example initialises the items in the common block for the plotting package used in

section 12.1, so that the initial pen position is at the origin, the scaling factor starts at one, and
so on. Thus a suitable program unit would be:

BLOCK DATA SETPLT

*SETPLT initialises the values used in the plotting package.

COMMON /PLOT/ OPENED, ORIGIN(2), PSCALE, NUMPEN

LOGICAL OPENED

INTEGER NUMPEN

REAL PSCALE, ORIGIN

SAVE /PLOT/

DATA OPENED/.FALSE./, ORIGIN/2*0.0/, PSCALE/1.0/

DATA NUMPEN/-1/

END

A block data unit can specify initial values for any number of named common blocks (blank
common cannot be initialised). Each common block must be complete but it is not necessary
to specify initial values for all of the items within it. There can be more than one block data
program unit, but a given common block cannot appear in more than one of them.

13 OBSOLETE AND DEPRECATED FEATURES 114

For compatibility with Fortran66 it is also possible to have one un-named block data program
unit in a program.

Linking Block Data Program Units

If, when linking a program, one of the modules containing a procedure is accidentally omitted
the linker is almost certain to produce an error message. But, unless additional precautions are
taken, this will not occur if a block data subprogram unit is omitted. The program may even
appear to work without it, but is likely to produce the wrong answer.
There is a simple way to guard against this possibility: the name of the block data unit

should be speciÞed in an EXTERNAL statement in at least some of the program units in which the
common block is used. There is no harm in declaring it in all of them. This ensures that a link-
time reference will be generated if any of these other program units are used. There is a slight
snag to this technique if an INCLUDE statement is used to bring the common block deÞnition
into each program unit including the block data unit. In order to avoid a self-reference, the
include-Þle should not contain the EXTERNAL statement.
Despite this slight complication, this is a simple and valuable precaution. It also makes is

possible to hold block data units on object libraries and retrieve them automatically when they
are required, just like all other types of subprogram unit.

13 Obsolete and Deprecated Features

None of the features covered here should be used in new software: some of them are completely
obsolete, others have practical defects which make them unsuitable for use in well-structured
software. These brief descriptions are provided only for the beneÞt of programmers who have
to understand and update programs designed in earlier years.

13.1 Storage of Character Strings in Non-character Items

Before the advent of the character data type it was possible to store text in arithmetic variables
and arrays, although only very limited manipulation was possible. The number of characters
which could be stored in each item was entirely system-dependent. One side-effect is that many
systems still allow the A format descriptor to match input/output items of arithmetic types;
this sometimes allows mismatches between data-transfer lists and format descriptors to pass
undetected.

13.2 Arithmetic IF Statement

This is an executable statement with the form:
IF(arithmetic-expression) label1, label2, label3
It generally provides a three-way branch (but two of the labels may be identical for a two-way

branch). The expression may be an integer, real, or double-precision value: control is transferred
to the statement attached to label1 if its value is negative, label2 if zero, or label3, if positive.

13.3 ASSIGN and assigned GO TO Statements

These two executable statements are normally used together. The ASSIGN statement assigns a
statement label value to an integer variable. When this has been done the variable no longer has
an arithmetic value. If the label is attached to an executable statement the variable can only be

13 OBSOLETE AND DEPRECATED FEATURES 115

used in an assigned GO TO statement; if attached to a FORMAT statement the variable can only
be used in a READ or WRITE statement. The general forms of these statements are:

ASSIGN label TO integer-variable
GO TO integer-variable ,(label, label, ... label)
In the assigned GO TO statement the comma and the entire parenthesised list of labels is

optional.
Assigned GO TO can be used to provide a linkage to and from a section of a program unit

acting as an internal subroutine, but is not a very convenient or satisfactory way of doing this.

13.4 PAUSE Statement

PAUSE is an executable statement which halts the program in such a way that execution can be
resumed in some way by the user (or on some systems by the computer operator). The general
forms of the statement are identical to those of STOP, for example:

PAUSE ’NOW MOUNT THE NEXT TAPE’

or

PAUSE 54321

PAUSE can be replaced by one WRITE and one READ statement: this is more ßexible and less
system-dependent.

13.5 Alternate RETURN

The alternate RETURN mechanism can be used in subroutines (but not external functions) to
arrange a transfer of control to some labelled statement on completion of a CALL statement. In
order to use it the arguments of the CALL statement must include a list of labels, each preceded
by an asterisk. These labels are attached to points in the calling program unit at which execution
may resume after the CALL statement is executed. For example:

CALL BAD(X, Y, Z, *150, *220, *390)

The corresponding subroutine statement will have asterisks as dummy arguments for each
label speciÞcation:

SUBROUTINE BAD(A, B, C, *, *, *)

The return point depends on the value of an integer expression given in the RETURN statement.
Thus:

RETURN 2

will cause execution to be resumed at the statement attached to the second label argument,
220 in this case. If the value of the integer expression in the RETURN statement is not in the
range 1 to n (where there are n label arguments) or a plain RETURN statement is executed, then
execution resumes at the statement after the CALL in the usual way.
The mechanism can be used for error-handling but is not very ßexible as information cannot

be passed through more than one procedure level. It is better to use an integer argument to
return a status value and use that with an IF (or even a computed GO TO statement) in the
calling program.

13 OBSOLETE AND DEPRECATED FEATURES 116

13.6 ENTRY Statement

ENTRY statements can be used to specify additional entry points in external functions and subrou-
tines. ENTRY is a non-executable statement which has the same form as a SUBROUTINE statement.
An ENTRY statement may be used at any point in a procedure but all speciÞcation statements re-
lating to its dummy arguments must appear in the appropriate place with the other speciÞcation
statements. If the main entry point is a SUBROUTINE statement than all alternative entry points
can be called in the same way as subroutines; if it is a FUNCTION statement than all alternative
entry point names can be used as functions. If the main entry point is a character function
then all the alternative entry points must also have that type. Alternative entry points may
have different lists of dummy arguments; it is up to the user to ensure that all those returning
information to the calling program are properly deÞned before exit.
The rules for the ENTRY statement are necessarily complicated so it is easy to make mistakes.

It is generally better, or at least less unsatisfactory, to use a set of separate procedures which
share information using common blocks.

13.7 EQUIVALENCE Statement

EQUIVALENCE is a speciÞcation statement which causes two or more items (variables or arrays)
to be associated with each other, i.e. to correspond to the same area of memory. Character items
can only be associated with other character items; otherwise the data types do not have to match.
As with common blocks, however, transfer of information is only permitted via associated items
if their data types match. A special exception is made for a complex item which is associated
with two real ones.

EQUIVALENCE statements can be used fairly safely to provide a simple variable name as an
alias for a particular array element or to associate a character variable with an array of the same
length. For example:

CHARACTER STRING*80, ARRAY(80)*1

EQUIVALENCE (STRING, ARRAY)

This slightly simpliÞes access to a single character in the string as the form ARRAY(K) can
be used instead of STRING(K:K).
The general form of the statement is:
EQUIVALENCE (v, v, ... v), (v, v, ... v), ...
where each v is a variable, array, array element, or substring. Dummy arguments of proce-

dures (and variables which are external function names) cannot appear. An array name without
subscripts refers to the Þrst element of the array. It is illegal to associate two or more elements
of the same array, directly or indirectly, or do anything which conßicts with the storage sequence
rules. Variables and arrays in common blocks can appear in EQUIVALENCE statements but this
has the effect of bringing all the associated items into the block. They can be used to extend the
contents of the block upwards, subject to the rules for common block length, but not downwards.
Although the EQUIVALENCE statement does have a few legitimate uses it is usually encountered

in programs where the rules of Fortran are broken to obtain some special effect. Programs which
do this are rarely portable.

13.8 Specific Names of Intrinsic Functions

SpeciÞc names should be used instead of the generic name of an intrinsic function only if the
name is to be the actual argument of a procedure call; the name then must also be declared

13 OBSOLETE AND DEPRECATED FEATURES 117

in an INTRINSIC statement. The following intrinsic functions cannot be used in this way, and
their speciÞc names are therefore completely obsolete.

Obsolete speciÞc name Preferred generic form

IFIX, IDINT INT
FLOAT, SNGL REAL
MAX0, AMAX1, DMAX1 MAX
AMAX0, MAX1 MAX *
MIN0, AMIN1, DMIN1 MIN
AMIN0, MIN1 MIN *

* the functions AMAX0, MAX1, AMIN0, and MIN1 which have a data type different from that
of their arguments can only be replaced by appropriate type conversion functions in addition to
MAX or MIN.

13.9 PRINT Statement and simplified READ

The PRINT statement can produce formatted or list-directed output on the standard pre-connected
output Þle. Thus these two statements have exactly the same effect:

PRINT fmt, data-list

WRITE(*, fmt) data-list

The PRINT statement is limited in its functionality and misleading, since there is no necessity
for its output to appear in printed form.
In a similar way there is a simpliÞed form of READ statement, so these have the same effect:

READ fmt, data-list

READ(*, fmt) data-list

13.10 END FILE Statement

The END FILE statement has the same general forms as REWIND and BACKSPACE:

END FILE(UNIT=unit, ERR=label, IOSTAT=int-var)

END FILE unit

It appends a special �end-Þle� record to a sequential Þle which is designed to trigger the
end-of-Þle detection mechanism on subsequent input. No further records can be written to the
Þle after this end-Þle record, i.e. the next operation must be CLOSE, REWIND, or BACKSPACE.
The statement seems to be superßuous on almost all current systems since they can detect

the end of an input Þle without its aid. The Fortran Standard requires that the end-Þle record be
treated as a physical record, so that after an end-of-Þle condition has been detected an explicit
BACKSPACE operation is required before any new data records are appended. This notion is
somewhat artiÞcial and not all systems implement it correctly. This is one of the few cases
where a deliberate departure from the Fortran Standard can enhance portability.

13.11 Obsolete Format Descriptors

The data descriptor Dw.d is exactly equivalent to Ew.d on input; on output it is similar except
that the exponent will use the letter D instead of E. Real and double precision data items can
be read equally well by D, E, F, or G descriptors.

14 APPENDIX A — LIST OF INTRINSIC FUNCTIONS 118

The format descriptor nHstring is exactly equivalent to ’string’ (where n is an un-
signed integer constant giving the length of the string). When used with a formatted WRITE

statement the string is copied to the output record. The nH form does not require apostrophes
to be doubled within the string but does require an accurate character count.

14 Appendix A — List of Intrinsic Functions

This table shows the number of arguments for each function and what data types are permitted.
The data type codes are: I = Integer, R = Real, D = Double precision, X = Complex, C =
Character, L = Logical, * means the result has the same data type as the argument(s). Note
that if there is more than one argument in such cases they must all have the same data type.

14 APPENDIX A — LIST OF INTRINSIC FUNCTIONS 119

R = ABS(X) Takes the modulus of a complex number (i.e. the square-root
of the sum of the squares of the two components).

* = ACOS(RD) Arc-cosine; the result is in the range 0 to +π
R = AIMAG(X) Extracts the imaginary component of a complex number. Use

REAL to extract the real component.
* = ANINT(RD) Rounds to the nearest whole number.
* = ATAN2(RD,RD) Arc-tangent of arg1/arg2 resolved into the correct quadrant,

the result is in the range −π to +π. It is an error to have
both arguments zero.

C = CHAR(I) Returns Nth character in local character code table.
X = CMPLX(IRDX,IRD) Converts to complex, second arg optional.
X = CONJG(X) Computes the complex conjugate of a complex number.
* = COS(RDX) Cosine of the angle in radians.
D = DBLE(IRDX) Converts to double precision.
* = DIM(IRD,IRD) Returns the positive difference of arg1 and arg2, i.e. if arg1 >

arg2 it returns (arg1 − arg2), otherwise zero.
D = DPROD(R,R) Computes the double precision product of two real values.
* = EXP(RDX) Returns the exponential, i.e. e to the power of the argument.

This is the inverse of the natural logarithm.
I = ICHAR(C) Returns position of Þrst character of the string in the local

character code table.
I = INDEX(C,C) Searches Þrst string and returns position of second string

within it starting at 1, otherwise zero.
I = INT(IRDX) Converts to integer by truncation.
I = LEN(C) Returns length of the argument in characters.
L = LGE(C,C) Lexical comparison using ASCII collating sequence: returns

true if arg1 >= arg2.
L = LGT(C,C) Lexical comparison using ASCII collating sequence: returns

true if arg1 > arg2.
L = LLE(C,C) Lexical comparison using ASCII collating sequence: returns

true if arg1 <= arg2.
L = LLT(C,C) Lexical comparison using ASCII collating sequence: returns

true if arg1 < arg2.
* = LOG(RDX) Logarithm to base e (where e=2.718...).
* = LOG10(RD) Logarithm to base 10.
* = MAX(IRD,IRD,...) Returns the largest of its arguments.
* = MIN(IRD,IRD,...) Returns the smallest of its arguments.
* = MOD(IRD,IRD) Returns arg1 modulo arg2, i.e. the remainder after dividing

arg1 by arg2.
R = REAL(IRDX) Converts to real.
* = SIGN(IRD,IRD) Performs sign transfer: if arg2 is negative the result is −arg1,

if arg2 is zero or positive the result is +arg1.
* = SQRT(RDX) Square root (error if arg negative).
* = TAN(RD) Tangent of the angle in radians.

15 APPENDIX B — SPECIFIC NAMES OF GENERIC FUNCTIONS 120

15 Appendix B — Specific Names of Generic Functions

SpeciÞc names are still needed when the function name is used as the actual argument of another
procedure. The speciÞc name must then also be declared in an INTRINSIC statement. This table
lists all the speciÞc names which are still useful in Fortran77 in these rare circumstances. The
other functions either do not have generic names or cannot be passed as actual arguments.

Generic SpeciÞc names
Name INTEGER REAL DOUBLE PRECISION COMPLEX

ABS IABS ABS DABS CABS
ACOS ACOS DACOS
AINT AINT DINT
ANINT ANINT DNINT
ASIN ASIN DASIN
ATAN ATAN DATAN
ATAN2 ATAN2 DATAN2
COS COS DCOS CCOS
COSH COSH DCOSH
DIM IDIM DIM DDIM
EXP EXP DEXP CEXP
LOG ALOG DLOG CLOG
LOG10 ALOG10 DLOG10
MOD MOD AMOD DMOD
NINT NINT IDNINT
SIGN ISIGN SIGN DSIGN
SIN SIN DSIN CSIN
SINH SINH DSINH
SQRT SQRT DSQRT CSQRT
TAN TAN DTAN
TANH TANH DTANH

Index

Adjustable arrays 72
Arguments of procedures 69
Arithmetic expressions 41
Arithmetic IF statement 114
Arithmetic operators 41
Arrays 38
Array elements 39
Arrays, adjustable 72
Arrays as arguments 71
Arrays, assumed-size 73
Arrays, character 74
Arrays, declaring size of 38
Arrays, initialising 106
ASCII collating sequence 51
ASSIGN statement 114
Assigned GO TO statement 114
Assignment, character 50
Assignment statements 47
Assumed-size arrays 73
BACKSPACE statement 104
Bit-wise logical operations 44
Blank characters 22
BLOCK DATA program units 113
CALL statement 76
Carriage-control 97
Character arrays 74
Character collating sequence 53
Character constants 33
Character data type 30
Character expressions 50
Character functions 51
Character handling 48
Character set, Fortran 21
CHARACTER statement 34
Characters, non-standard 22
CLOSE statement 100
Column control in formats 94
Comment lines 23
Common blocks 108
COMMON statement 113
Comparisons, arithmetic 53
Comparisons, character 53
Compiling 18
Complex constants 33
Complex data type 30

Computed GO TO statement 61
Constant expressions 44
Constants, named 36
Constants 32
Continuation lines 23
Currency symbol 22
DATA statement 104
Data type conversions 43
Data type defaults 34
Data types, non-standard 31
Data types 28
DIMENSION statement 38
Direct access Þles 82, 84
DO WHILE loops 7
DO-loops 58
Double precision constants 33
Double precision data type 30
ELSE and ELSE IF statements 57
END DO statement 7
END FILE statement 117
End-of-Þle condition 89
ENTRY statement 116
EQUIVALENCE statement 116
Errors, I/O 87
Errors 21
Execution sequence 26
Expressions, arithmetic 40
Expressions, logical 54
Expressions, relational 52
Extensions 7
External Þles 83
External procedures 65
EXTERNAL statement 79
Files, external 81
Files, internal 80
Files 80
Format data descriptors 91
Format speciÞcation 89
FORMAT statement 90
Formats, character 93
Formats, ßoating-point 92
Formats, integer 92
Formats, logical 93
Fortran90 6
FUNCTION statement 77

121

INDEX 122

Functions, external 68
Functions, intrinsic 45
Functions, statement 64
Functions, type conversion 46
Global names 27
GO TO statement 61
IF-blocks 57
IMPLICIT NONE statement 7
IMPLICIT statement 35
Implied DO-loops in I/O 103
INCLUDE statement 7, 18
Initialising variables 106
Input/output facilities 80
INQUIRE statement 81, 100
Integer constants 32
Integer data type 29
Integer division 43
Internal Þles 80, 85
Intrinsic function names 27, 116
Intrinsic functions 45, 63, 118
INTRINSIC statement 79
I/O units 81
Labels 24
Linking 19
List-directed input 96
List-directed I/O 83
List-directed output 96
Logical constants 33
Logical data type 30
Logical expressions 54
Logical-IF statement 60
Loops 56
Named constants 36
Names, scope of 27
Names, symbolic 26
Object libraries 19
OPEN statement 81, 99
Operators, logical 55
PARAMETER statement 37
PAUSE statement 115
Pre-connected Þles 87
PRINT statement 117
Printing and carriage-control 97
Procedures as arguments 75
Procedures, external 65
Procedures 25, 63
PROGRAM statement 28
Program units 25

READ statement 80, 102
Real constants 32
Real data type 29
Record control in formats 94
Records 81
Relational expressions 52
Reserved words 27
RETURN, alternate 115
RETURN statement 76
REWIND statement 104
SAVE statement and common blocks 111
SAVE statement 79
Scale factors in formats 95
Sequential access Þles 82
Source Code 17
Statement functions 64
Statement labels 24
Statement layout 23
Statement order 25
STOP statement 57, 62
Storage sequence 40
Storage units 31
SUBROUTINE statement 76
Substrings, character 49
Symbolic names 26
Terminal I/O 87
Text Þles 83
Trigonometric functions 45
Type conversion 46
Type statements 34
UndeÞned values 44
Variables 38
WRITE statement 80, 102

